Filtros : "PROGRAMAÇÃO MATEMÁTICA" "OTIMIZAÇÃO NÃO LINEAR" Removido: "International Marine Design Conference" Limpar

Filtros



Refine with date range


  • Source: Mathematical Programming. Unidade: ICMC

    Subjects: ALGORITMOS, OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. A primal nonsmooth reformulation for bilevel optimization problems. Mathematical Programming, v. 198, p. 1381-1409, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10107-021-01764-6. Acesso em: 07 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2023). A primal nonsmooth reformulation for bilevel optimization problems. Mathematical Programming, 198, 1381-1409. doi:10.1007/s10107-021-01764-6
    • NLM

      Helou ES, Santos SA, Simões LEA. A primal nonsmooth reformulation for bilevel optimization problems [Internet]. Mathematical Programming. 2023 ; 198 1381-1409.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-021-01764-6
    • Vancouver

      Helou ES, Santos SA, Simões LEA. A primal nonsmooth reformulation for bilevel optimization problems [Internet]. Mathematical Programming. 2023 ; 198 1381-1409.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-021-01764-6
  • Source: Mathematical Programming Computation. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, v. 14, n. 1, p. 121-146, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12532-021-00207-9. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., Secchin, L. D., & Silva e Silva, P. J. (2022). On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, 14( 1), 121-146. doi:10.1007/s12532-021-00207-9
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, v. 90, n. 2, p. 851-877, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11075-021-01212-8. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramos, A., & Secchin, L. D. (2022). On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, 90( 2), 851-877. doi:10.1007/s11075-021-01212-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
  • Unidade: EP

    Subjects: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO COMBINATÓRIA, CARGA, NAVIOS, OTIMIZAÇÃO NÃO LINEAR

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOAVENTURA, Fábio Gasparotto. Uma abordagem matheuristic para o problema de alocação de cargas no convés de navios de apoio offshore. 2021. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/3/3148/tde-18012022-124410/. Acesso em: 07 nov. 2025.
    • APA

      Boaventura, F. G. (2021). Uma abordagem matheuristic para o problema de alocação de cargas no convés de navios de apoio offshore. (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/3/3148/tde-18012022-124410/
    • NLM

      Boaventura FG. Uma abordagem matheuristic para o problema de alocação de cargas no convés de navios de apoio offshore. [Internet]. 2021 ;[citado 2025 nov. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/3/3148/tde-18012022-124410/
    • Vancouver

      Boaventura FG. Uma abordagem matheuristic para o problema de alocação de cargas no convés de navios de apoio offshore. [Internet]. 2021 ;[citado 2025 nov. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/3/3148/tde-18012022-124410/
  • Source: Optimization. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE NUMÉRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On the constrained error bound condition and the projected Levenberg–Marquardt method. Optimization, v. 66, n. 8, p. 1397-1411, 2017Tradução . . Disponível em: https://doi.org/10.1080/02331934.2016.1200578. Acesso em: 07 nov. 2025.
    • APA

      Behling, R., Fischer, A., Haeser, G., Ramos, A., & Schönefeld, K. (2017). On the constrained error bound condition and the projected Levenberg–Marquardt method. Optimization, 66( 8), 1397-1411. doi:10.1080/02331934.2016.1200578
    • NLM

      Behling R, Fischer A, Haeser G, Ramos A, Schönefeld K. On the constrained error bound condition and the projected Levenberg–Marquardt method [Internet]. Optimization. 2017 ; 66( 8): 1397-1411.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/02331934.2016.1200578
    • Vancouver

      Behling R, Fischer A, Haeser G, Ramos A, Schönefeld K. On the constrained error bound condition and the projected Levenberg–Marquardt method [Internet]. Optimization. 2017 ; 66( 8): 1397-1411.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/02331934.2016.1200578
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On second-order optimality conditions in nonlinear optimization. Optimization Methods and Software, v. 32, n. 1, p. 22-38, 2017Tradução . . Disponível em: https://doi.org/10.1080/10556788.2016.1188926. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Behling, R., Haeser, G., & Silva, P. J. S. e. (2017). On second-order optimality conditions in nonlinear optimization. Optimization Methods and Software, 32( 1), 22-38. doi:10.1080/10556788.2016.1188926
    • NLM

      Andreani R, Behling R, Haeser G, Silva PJS e. On second-order optimality conditions in nonlinear optimization [Internet]. Optimization Methods and Software. 2017 ; 32( 1): 22-38.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/10556788.2016.1188926
    • Vancouver

      Andreani R, Behling R, Haeser G, Silva PJS e. On second-order optimality conditions in nonlinear optimization [Internet]. Optimization Methods and Software. 2017 ; 32( 1): 22-38.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1080/10556788.2016.1188926
  • Unidade: ICMC

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAZZINI, Ana Paula. Um méodo de Lagrangianos aumentados e sua aplicação em otimização de malhas. 2012. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2012. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29032012-141547/. Acesso em: 07 nov. 2025.
    • APA

      Mazzini, A. P. (2012). Um méodo de Lagrangianos aumentados e sua aplicação em otimização de malhas (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29032012-141547/
    • NLM

      Mazzini AP. Um méodo de Lagrangianos aumentados e sua aplicação em otimização de malhas [Internet]. 2012 ;[citado 2025 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29032012-141547/
    • Vancouver

      Mazzini AP. Um méodo de Lagrangianos aumentados e sua aplicação em otimização de malhas [Internet]. 2012 ;[citado 2025 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29032012-141547/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025