Filtros : "Neural Computing and Applications" "Brasil" Removido: "Financiamento IBM" Limpar

Filtros



Limitar por data


  • Fonte: Neural Computing and Applications. Unidade: ICMC

    Assuntos: EMOÇÕES, VOZ, REDES NEURAIS, RECONHECIMENTO DE VOZ

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA FILHO, Geraldo Pereira et al. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, v. 36, p. 19939–19950, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00521-024-10249-4. Acesso em: 29 nov. 2025.
    • APA

      Rocha Filho, G. P., Meneguette, R. I., Mendonça, F. L. L. de, Enamoto, L. M., Pessin, G., & Gonçalves, V. P. (2024). Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, 36, 19939–19950. doi:10.1007/s00521-024-10249-4
    • NLM

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
    • Vancouver

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
  • Fonte: Neural Computing and Applications. Unidade: ICMC

    Assuntos: APRENDIZADO COMPUTACIONAL, ELETROENCEFALOGRAFIA, EPILEPSIA, DIAGNÓSTICO POR COMPUTADOR, TECNOLOGIAS DA SAÚDE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARGAS, Dionathan Luan de et al. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis. Neural Computing and Applications, v. 35, n. 16, p. 12195-12219, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00521-023-08350-1. Acesso em: 29 nov. 2025.
    • APA

      Vargas, D. L. de, Oliva, J. T., Teixeira, M., Casanova, D., & Rosa, J. L. G. (2023). Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis. Neural Computing and Applications, 35( 16), 12195-12219. doi:10.1007/s00521-023-08350-1
    • NLM

      Vargas DL de, Oliva JT, Teixeira M, Casanova D, Rosa JLG. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis [Internet]. Neural Computing and Applications. 2023 ; 35( 16): 12195-12219.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-023-08350-1
    • Vancouver

      Vargas DL de, Oliva JT, Teixeira M, Casanova D, Rosa JLG. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis [Internet]. Neural Computing and Applications. 2023 ; 35( 16): 12195-12219.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-023-08350-1
  • Fonte: Neural Computing and Applications. Unidade: FEA

    Assuntos: APRENDIZADO COMPUTACIONAL, LÓGICA FUZZY, MOEDA (ECONOMIA)

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACIEL, Leandro dos Santos e BALLINI, Rosangela e GOMIDE, Fernando. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, v. 1, p. 1, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00521-021-06263-5. Acesso em: 29 nov. 2025.
    • APA

      Maciel, L. dos S., Ballini, R., & Gomide, F. (2021). Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, 1, 1. doi:10.1007/s00521-021-06263-5
    • NLM

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
    • Vancouver

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
  • Fonte: Neural Computing and Applications. Unidade: EACH

    Assuntos: EPILEPSIA, ELETROENCEFALOGRAFIA, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Luís Augusto Martins et al. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, n. ju 2017, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-3124-3. Acesso em: 29 nov. 2025.
    • APA

      Pereira, L. A. M., Papa, J. P., Coelho, A. L. V., Lima, C. A. de M., Pereira, D. R., & Albuquerque, V. H. C. de. (2017). Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, ( ju 2017), 1-13. doi:10.1007/s00521-017-3124-3
    • NLM

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
    • Vancouver

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
  • Fonte: Neural Computing and Applications. Unidades: EESC, ICMC

    Assuntos: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo et al. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, v. 27, p. 1129-1141, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1930-z. Acesso em: 29 nov. 2025.
    • APA

      Furquim, G., Pessin, G., Faiçal, B. S., Mendiondo, E. M., & Ueyama, J. (2016). Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, 27, 1129-1141. doi:10.1007/s00521-015-1930-z
    • NLM

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-015-1930-z
    • Vancouver

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 29 ] Available from: https://doi.org/10.1007/s00521-015-1930-z

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025