Filtros : "Neural Computing and Applications" "Brasil" Removido: "DIAGNÓSTICO POR COMPUTADOR" Limpar

Filtros



Refine with date range


  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS), MERCADO FINANCEIRO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS FILHO, Ivan José dos et al. How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations. Neural Computing and Applications, v. 37, n. Ja 2025, p. 1307-1319, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00521-024-10418-5. Acesso em: 28 nov. 2025.
    • APA

      Reis Filho, I. J. dos, Gôlo, M. P. S., Marcacini, R. M., & Rezende, S. O. (2025). How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations. Neural Computing and Applications, 37( Ja 2025), 1307-1319. doi:10.1007/s00521-024-10418-5
    • NLM

      Reis Filho IJ dos, Gôlo MPS, Marcacini RM, Rezende SO. How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations [Internet]. Neural Computing and Applications. 2025 ; 37( Ja 2025): 1307-1319.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-024-10418-5
    • Vancouver

      Reis Filho IJ dos, Gôlo MPS, Marcacini RM, Rezende SO. How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations [Internet]. Neural Computing and Applications. 2025 ; 37( Ja 2025): 1307-1319.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-024-10418-5
  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: EMOÇÕES, VOZ, REDES NEURAIS, RECONHECIMENTO DE VOZ

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA FILHO, Geraldo Pereira et al. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, v. 36, p. 19939–19950, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00521-024-10249-4. Acesso em: 28 nov. 2025.
    • APA

      Rocha Filho, G. P., Meneguette, R. I., Mendonça, F. L. L. de, Enamoto, L. M., Pessin, G., & Gonçalves, V. P. (2024). Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers. Neural Computing and Applications, 36, 19939–19950. doi:10.1007/s00521-024-10249-4
    • NLM

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
    • Vancouver

      Rocha Filho GP, Meneguette RI, Mendonça FLL de, Enamoto LM, Pessin G, Gonçalves VP. Toward an emotion efficient architecture based on the sound spectrum from the voice of Portuguese speakers [Internet]. Neural Computing and Applications. 2024 ; 36 19939–19950.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-024-10249-4
  • Source: Neural Computing and Applications. Unidade: FEA

    Subjects: APRENDIZADO COMPUTACIONAL, LÓGICA FUZZY, MOEDA (ECONOMIA)

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACIEL, Leandro dos Santos e BALLINI, Rosangela e GOMIDE, Fernando. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, v. 1, p. 1, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00521-021-06263-5. Acesso em: 28 nov. 2025.
    • APA

      Maciel, L. dos S., Ballini, R., & Gomide, F. (2021). Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, 1, 1. doi:10.1007/s00521-021-06263-5
    • NLM

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
    • Vancouver

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
  • Source: Neural Computing and Applications. Unidade: EACH

    Subjects: EPILEPSIA, ELETROENCEFALOGRAFIA, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Luís Augusto Martins et al. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, n. ju 2017, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-3124-3. Acesso em: 28 nov. 2025.
    • APA

      Pereira, L. A. M., Papa, J. P., Coelho, A. L. V., Lima, C. A. de M., Pereira, D. R., & Albuquerque, V. H. C. de. (2017). Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, ( ju 2017), 1-13. doi:10.1007/s00521-017-3124-3
    • NLM

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
    • Vancouver

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
  • Source: Neural Computing and Applications. Unidades: EESC, ICMC

    Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo et al. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, v. 27, p. 1129-1141, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1930-z. Acesso em: 28 nov. 2025.
    • APA

      Furquim, G., Pessin, G., Faiçal, B. S., Mendiondo, E. M., & Ueyama, J. (2016). Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, 27, 1129-1141. doi:10.1007/s00521-015-1930-z
    • NLM

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-015-1930-z
    • Vancouver

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1007/s00521-015-1930-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025