Source: Frontiers in Plant Science. Unidade: ESALQ
Subjects: APRENDIZADO COMPUTACIONAL, ARROZ, CLIMA, INTERAÇÃO GENÓTIPO-AMBIENTE, MODELOS MATEMÁTICOS, SOLOS
ABNT
PRADO, Melina et al. Optimizing multi-environment trials in the Southern US Rice belt via smart-climate-soil prediction-based models and economic importance. Frontiers in Plant Science, v. 15, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.3389/fpls.2024.1458701. Acesso em: 27 nov. 2025.APA
Prado, M., Famoso, A., Guidry, K., & Fritsche-Neto, R. (2024). Optimizing multi-environment trials in the Southern US Rice belt via smart-climate-soil prediction-based models and economic importance. Frontiers in Plant Science, 15, 1-13. doi:10.3389/fpls.2024.1458701NLM
Prado M, Famoso A, Guidry K, Fritsche-Neto R. Optimizing multi-environment trials in the Southern US Rice belt via smart-climate-soil prediction-based models and economic importance [Internet]. Frontiers in Plant Science. 2024 ; 15 1-13.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3389/fpls.2024.1458701Vancouver
Prado M, Famoso A, Guidry K, Fritsche-Neto R. Optimizing multi-environment trials in the Southern US Rice belt via smart-climate-soil prediction-based models and economic importance [Internet]. Frontiers in Plant Science. 2024 ; 15 1-13.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3389/fpls.2024.1458701
