Filtros : "Nonlinear Analysis" "Financiado pela FAPESP" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS LINEARES, PROBLEMAS DE AUTOVALORES, ANÁLISE ASSINTÓTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e ROSSI, Julio D. e SAINTIER, Nicolas. Fractional problems in thin domains. Nonlinear Analysis, v. 193, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2019.02.024. Acesso em: 10 nov. 2025.
    • APA

      Pereira, M. C., Rossi, J. D., & Saintier, N. (2020). Fractional problems in thin domains. Nonlinear Analysis, 193. doi:10.1016/j.na.2019.02.024
    • NLM

      Pereira MC, Rossi JD, Saintier N. Fractional problems in thin domains [Internet]. Nonlinear Analysis. 2020 ; 193[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2019.02.024
    • Vancouver

      Pereira MC, Rossi JD, Saintier N. Fractional problems in thin domains [Internet]. Nonlinear Analysis. 2020 ; 193[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2019.02.024
  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia e OHTA, Masahito. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph. Nonlinear Analysis, v. 196, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111753. Acesso em: 10 nov. 2025.
    • APA

      Goloshchapova, N., & Ohta, M. (2020). Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph. Nonlinear Analysis, 196, 1-23. doi:10.1016/j.na.2020.111753
    • NLM

      Goloshchapova N, Ohta M. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph [Internet]. Nonlinear Analysis. 2020 ; 196 1-23.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2020.111753
    • Vancouver

      Goloshchapova N, Ohta M. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph [Internet]. Nonlinear Analysis. 2020 ; 196 1-23.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2020.111753
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e FERNANDES, Wilker e OLIVEIRA, Regilene Delazari dos Santos. Symmetric centers on planar cubic differential systems. Nonlinear Analysis, v. 197, p. 1-14, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111868. Acesso em: 10 nov. 2025.
    • APA

      Dukaric, M., Fernandes, W., & Oliveira, R. D. dos S. (2020). Symmetric centers on planar cubic differential systems. Nonlinear Analysis, 197, 1-14. doi:10.1016/j.na.2020.111868
    • NLM

      Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2020.111868
    • Vancouver

      Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2020.111868
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÃO DE SCHRODINGER, MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEHRER, Raquel e SOARES, Sérgio Henrique Monari. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Analysis, v. 197, p. 1-29, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111841. Acesso em: 10 nov. 2025.
    • APA

      Lehrer, R., & Soares, S. H. M. (2020). Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Analysis, 197, 1-29. doi:10.1016/j.na.2020.111841
    • NLM

      Lehrer R, Soares SHM. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations [Internet]. Nonlinear Analysis. 2020 ; 197 1-29.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2020.111841
    • Vancouver

      Lehrer R, Soares SHM. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations [Internet]. Nonlinear Analysis. 2020 ; 197 1-29.[citado 2025 nov. 10 ] Available from: https://doi.org/10.1016/j.na.2020.111841

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025