Symmetric centers on planar cubic differential systems (2020)
- Authors:
- Autor USP: OLIVEIRA, REGILENE DELAZARI DOS SANTOS - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.na.2020.111868
- Subjects: TEORIA QUALITATIVA; SISTEMAS DINÂMICOS
- Keywords: Planar polynomial differential systems; Bi-centers; Global phase portrait; Time-reversible systems; Equivariant systems
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Kidlington
- Date published: 2020
- Source:
- Título: Nonlinear Analysis
- ISSN: 0362-546X
- Volume/Número/Paginação/Ano: v. 197, p. 1-14, Aug. 2020
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
DUKARIC, Masa e FERNANDES, Wilker e OLIVEIRA, Regilene Delazari dos Santos. Symmetric centers on planar cubic differential systems. Nonlinear Analysis, v. 197, p. 1-14, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111868. Acesso em: 21 jan. 2026. -
APA
Dukaric, M., Fernandes, W., & Oliveira, R. D. dos S. (2020). Symmetric centers on planar cubic differential systems. Nonlinear Analysis, 197, 1-14. doi:10.1016/j.na.2020.111868 -
NLM
Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.na.2020.111868 -
Vancouver
Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.na.2020.111868 - Singular levels and topological invariants of Morse Bott systems on surfaces
- Limit cycles for a class of generalized Kukles discontinuous piecewise polynomial differential system
- Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines
- Global dynamical aspects of a generalized Sprott E differential system
- Global dynamical aspects of a generalized Chen-Wang differential system
- Limit cycles for two classes of control piecewise linear differential systems
- On the limit cycle of a Belousov-Zhabotinsky differential systems
- Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas
- Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes
- Global dynamics of the May-Leonard system with a Darboux invariant
Informações sobre o DOI: 10.1016/j.na.2020.111868 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2994744.pdf | |||
| 2994744_post.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
