Filtros : "MODELOS PARA PROCESSOS ESTOCÁSTICOS" "2011" Removido: "MORTALIDADE ANIMAL" Limpar

Filtros



Refine with date range


  • Source: Applied Stochastic models in Business and Industry. Unidade: IME

    Assunto: MODELOS PARA PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORETTIN, Pedro Alberto e NORBERG, Ragnar. Special issue on statistical modeling in insurance and finance . [Foreword]. Applied Stochastic models in Business and Industry. Malden: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1002/asmb.832. Acesso em: 22 nov. 2025. , 2011
    • APA

      Morettin, P. A., & Norberg, R. (2011). Special issue on statistical modeling in insurance and finance . [Foreword]. Applied Stochastic models in Business and Industry. Malden: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1002/asmb.832
    • NLM

      Morettin PA, Norberg R. Special issue on statistical modeling in insurance and finance . [Foreword] [Internet]. Applied Stochastic models in Business and Industry. 2011 ; 27( 1): 1.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1002/asmb.832
    • Vancouver

      Morettin PA, Norberg R. Special issue on statistical modeling in insurance and finance . [Foreword] [Internet]. Applied Stochastic models in Business and Industry. 2011 ; 27( 1): 1.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1002/asmb.832
  • Source: Journal of the Brazilian Society of Mechanical Sciences and Engineering. Unidade: EESC

    Subjects: PIEZOELETRICIDADE, MODELOS PARA PROCESSOS ESTOCÁSTICOS, VIBRAÇÕES DE MÁQUINAS (CONTROLE)

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Heinsten Frederich Leal dos e TRINDADE, Marcelo Areias. Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 33, n. 3, p. 287-301, 2011Tradução . . Disponível em: https://doi.org/10.1590/s1678-58782011000300004. Acesso em: 22 nov. 2025.
    • APA

      Santos, H. F. L. dos, & Trindade, M. A. (2011). Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 33( 3), 287-301. doi:10.1590/s1678-58782011000300004
    • NLM

      Santos HFL dos, Trindade MA. Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties [Internet]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2011 ; 33( 3): 287-301.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1590/s1678-58782011000300004
    • Vancouver

      Santos HFL dos, Trindade MA. Structural vibration control using extension and shear active-passive piezoelectric networks including sensitivity to electrical uncertainties [Internet]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2011 ; 33( 3): 287-301.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1590/s1678-58782011000300004
  • Source: Lithuanian Mathematical Journal. Unidade: ESALQ

    Subjects: ANÁLISE DE VARIÂNCIA, CONVERGÊNCIA, MODELOS PARA PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JØRGENSEN, Bent e MARTINEZ, José R e DEMÉTRIO, Clarice Garcia Borges. Self-similarity and lamperti convergence for families of stochastic processes. Lithuanian Mathematical Journal, v. 51, n. 3, p. 342–361, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10986-011-9131-7. Acesso em: 22 nov. 2025.
    • APA

      Jørgensen, B., Martinez, J. R., & Demétrio, C. G. B. (2011). Self-similarity and lamperti convergence for families of stochastic processes. Lithuanian Mathematical Journal, 51( 3), 342–361. doi:10.1007/s10986-011-9131-7
    • NLM

      Jørgensen B, Martinez JR, Demétrio CGB. Self-similarity and lamperti convergence for families of stochastic processes [Internet]. Lithuanian Mathematical Journal. 2011 ; 51( 3): 342–361.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1007/s10986-011-9131-7
    • Vancouver

      Jørgensen B, Martinez JR, Demétrio CGB. Self-similarity and lamperti convergence for families of stochastic processes [Internet]. Lithuanian Mathematical Journal. 2011 ; 51( 3): 342–361.[citado 2025 nov. 22 ] Available from: https://doi.org/10.1007/s10986-011-9131-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025