Filtros : "DINÂMICA TOPOLÓGICA" "Holanda" Removido: "Financiado pela FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Decision Analytics Journal. Unidade: Interinstitucional de Pós-Graduação em Estatística

    Assuntos: PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS), DINÂMICA TOPOLÓGICA, HOMOLOGIA, MERCADO FINANCEIRO, ECONOMETRIA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUTO, Hugo Gobato e MORADI, Amir. A generalization of the topological tail dependence theory: from indices to individual stocks. Decision Analytics Journal, v. 12, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.dajour.2024.100512. Acesso em: 04 dez. 2025.
    • APA

      Souto, H. G., & Moradi, A. (2024). A generalization of the topological tail dependence theory: from indices to individual stocks. Decision Analytics Journal, 12, 1-13. doi:10.1016/j.dajour.2024.100512
    • NLM

      Souto HG, Moradi A. A generalization of the topological tail dependence theory: from indices to individual stocks [Internet]. Decision Analytics Journal. 2024 ; 12 1-13.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.dajour.2024.100512
    • Vancouver

      Souto HG, Moradi A. A generalization of the topological tail dependence theory: from indices to individual stocks [Internet]. Decision Analytics Journal. 2024 ; 12 1-13.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.dajour.2024.100512
  • Fonte: Asymptotic Analysis. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DE CONTROLE, TEORIA DE SISTEMAS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, v. 129, n. 1, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.3233/ASY-211719. Acesso em: 04 dez. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2022). Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, 129( 1), 1-27. doi:10.3233/ASY-211719
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3233/ASY-211719
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2025 dez. 04 ] Available from: https://doi.org/10.3233/ASY-211719
  • Fonte: Geometriae Dedicata. Unidade: ICMC

    Assuntos: TEORIA DO ÍNDICE, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S e MANZOLI NETO, Oziride e REZENDE, Ketty Abaroa de. On handle theory for Morse-Bott critical manifolds. Geometriae Dedicata, v. 202, n. 1, p. 265-309, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10711-018-0413-7. Acesso em: 04 dez. 2025.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., & Rezende, K. A. de. (2019). On handle theory for Morse-Bott critical manifolds. Geometriae Dedicata, 202( 1), 265-309. doi:10.1007/s10711-018-0413-7
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de. On handle theory for Morse-Bott critical manifolds [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 265-309.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s10711-018-0413-7
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de. On handle theory for Morse-Bott critical manifolds [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 265-309.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1007/s10711-018-0413-7
  • Fonte: Topology and its Applications. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de et al. Lyapunov graphs for circle valued functions. Topology and its Applications, v. 245, p. 62-91, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.06.008. Acesso em: 04 dez. 2025.
    • APA

      Rezende, K. A. de, Ledesma, G. G. E., Manzoli Neto, O., & Vago, G. M. (2018). Lyapunov graphs for circle valued functions. Topology and its Applications, 245, 62-91. doi:10.1016/j.topol.2018.06.008
    • NLM

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
    • Vancouver

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
  • Fonte: Topology and its Applications. Unidade: ICMC

    Assuntos: SISTEMAS HAMILTONIANOS, DINÂMICA TOPOLÓGICA, TEORIA QUALITATIVA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, v. 234, p. 220-237, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.023. Acesso em: 04 dez. 2025.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2018). Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, 234, 220-237. doi:10.1016/j.topol.2017.11.023
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, v. 244, n. 9, p. 2334-2349, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2008.02.007. Acesso em: 04 dez. 2025.
    • APA

      Bonotto, E. de M., & Federson, M. (2008). Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, 244( 9), 2334-2349. doi:10.1016/j.jde.2008.02.007
    • NLM

      Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007
    • Vancouver

      Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2025 dez. 04 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025