Filtros : "Journal of Chemical Information and Modeling" "FFCLRP-593" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: ALGORITMOS, APRENDIZADO COMPUTACIONAL, BIOMATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERZ, Kenneth M et al. Machine Learning in Materials Science. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00727. Acesso em: 09 nov. 2025. , 2024
    • APA

      Merz, K. M., Choong, Y. S., Cournia, Z., Isayev, O., Soares, T. A., Wei, G. -W., & Zhu, F. (2024). Machine Learning in Materials Science. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00727
    • NLM

      Merz KM, Choong YS, Cournia Z, Isayev O, Soares TA, Wei G-W, Zhu F. Machine Learning in Materials Science. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 10): 3959-3960.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.4c00727
    • Vancouver

      Merz KM, Choong YS, Cournia Z, Isayev O, Soares TA, Wei G-W, Zhu F. Machine Learning in Materials Science. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 10): 3959-3960.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.4c00727
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, SIMULAÇÃO, MODELAGEM MOLECULAR, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KARMAKAR, Tarak e SOARES, Thereza Amélia e MERZ JR, Kenneth M. Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00537. Acesso em: 09 nov. 2025. , 2024
    • APA

      Karmakar, T., Soares, T. A., & Merz Jr, K. M. (2024). Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00537
    • NLM

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
    • Vancouver

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
  • Source: Journal of Chemical Information and Modeling. Unidades: IQSC, FFCLRP

    Subjects: BIOENGENHARIA, BIOTECNOLOGIA, BIOLOGIA, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRATI, Ronaldo C. et al. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1107–1111, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c02014. Acesso em: 09 nov. 2025.
    • APA

      Prati, R. C., Rodrigues, B. S. M., Aragão, I., Silva, T. A. S. da, Quiles, M. G., & Silva, J. L. F. da. (2024). The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, 64( 4), 1107–1111. doi:10.1021/acs.jcim.3c02014
    • NLM

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
    • Vancouver

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: QUÍMICA TEÓRICA, MOLÉCULA, PESQUISA CIENTÍFICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Thereza A. et al. Guidelines for reporting molecular dynamics simulations in JCIM publications. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.3c00599. Acesso em: 09 nov. 2025. , 2023
    • APA

      Soares, T. A., Cournia, Z., Naidoo, K. J., Amaro, R. E., Wahab, H. A., & Merz, K. (2023). Guidelines for reporting molecular dynamics simulations in JCIM publications. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.3c00599
    • NLM

      Soares TA, Cournia Z, Naidoo KJ, Amaro RE, Wahab HA, Merz K. Guidelines for reporting molecular dynamics simulations in JCIM publications. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 11): 3227-3229.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.3c00599
    • Vancouver

      Soares TA, Cournia Z, Naidoo KJ, Amaro RE, Wahab HA, Merz K. Guidelines for reporting molecular dynamics simulations in JCIM publications. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 11): 3227-3229.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.3c00599
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: QUÍMICA, REPLICAÇÃO DO DNA, GENÔMICA, ÁCIDOS NUCLEICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALERMO, Giulia e SOARES, Thereza A. Editing DNA and RNA through Computations [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.3c01824. Acesso em: 09 nov. 2025. , 2023
    • APA

      Palermo, G., & Soares, T. A. (2023). Editing DNA and RNA through Computations [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.3c01824
    • NLM

      Palermo G, Soares TA. Editing DNA and RNA through Computations [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7603-7604.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.3c01824
    • Vancouver

      Palermo G, Soares TA. Editing DNA and RNA through Computations [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7603-7604.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.3c01824
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PERIÓDICOS CIENTÍFICOS, QUÍMICA, QUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WEI, Guo-Wei et al. Computational chemistry in Asia [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01050. Acesso em: 09 nov. 2025. , 2022
    • APA

      Wei, G. -W., Soares, T. A., Wahab, H. A., & Wang, R. (2022). Computational chemistry in Asia [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01050
    • NLM

      Wei G-W, Soares TA, Wahab HA, Wang R. Computational chemistry in Asia [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 21): 5035-5037.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c01050
    • Vancouver

      Wei G-W, Soares TA, Wahab HA, Wang R. Computational chemistry in Asia [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 21): 5035-5037.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c01050
  • Source: Journal of Chemical Information and Modeling. Unidades: IF, FFCLRP

    Subjects: FÍSICO-QUÍMICA, FÍSICA MOLECULAR, SOFTWARE ESTATÍSTICO PARA MICROCOMPUTADORES, LIPÍDEOS DA MEMBRANA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Denys e COUTINHO, Kaline Rabelo e SILVA, Thereza Amélia Soares da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4690-4701, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00673. Acesso em: 09 nov. 2025.
    • APA

      Santos, D., Coutinho, K. R., & Silva, T. A. S. da. (2022). Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, 62( 19), 4690-4701. doi:10.1021/acs.jcim.2c00673
    • NLM

      Santos D, Coutinho KR, Silva TAS da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4690-4701.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c00673
    • Vancouver

      Santos D, Coutinho KR, Silva TAS da. Surface Assessment via Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4690-4701.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c00673
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PRECONCEITO, PESQUISA CIENTÍFICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASCELLA, Michele e SILVA, Thereza Amélia Soares da. Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, v. 62, n. 24, p. 6297-6301, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00533. Acesso em: 09 nov. 2025.
    • APA

      Cascella, M., & Silva, T. A. S. da. (2022). Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, 62( 24), 6297-6301. doi:10.1021/acs.jcim.2c00533
    • NLM

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
    • Vancouver

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: PERIÓDICOS CIENTÍFICOS, QUÍMICA TEÓRICA, CIÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COURNIA, Zoe et al. Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01543. Acesso em: 09 nov. 2025. , 2022
    • APA

      Cournia, Z., Soares, T. A., Wahab, H. A., & Amaro, R. E. (2022). Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01543
    • NLM

      Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6287-6291.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c01543
    • Vancouver

      Cournia Z, Soares TA, Wahab HA, Amaro RE. Celebrating diversity, equity, inclusion, and respect in computational and theoretical chemistry [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6287-6291.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c01543
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: APRENDIZADO COMPUTACIONAL, MODELOS MATEMÁTICOS, ESTRUTURA MOLECULAR (QUÍMICA TEÓRICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Thereza A. et al. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01422. Acesso em: 09 nov. 2025. , 2022
    • APA

      Soares, T. A., Alves, A. F. N., Mazzolari, A., Ruggiu, F., Wei, G. -W., & Merz, K. (2022). The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01422
    • NLM

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
    • Vancouver

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
  • Source: Journal of Chemical Information and Modeling. Unidades: FFCLRP, IQSC

    Subjects: ÍONS ELETRÔNICOS, ESTRUTURA ATÔMICA (QUÍMICA TEÓRICA), ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Alex S. et al. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, v. 62, n. 19, p. 4702–4712, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00748. Acesso em: 09 nov. 2025.
    • APA

      Moraes, A. S., Pinheiro, G. A., Lourenço, T. da C., Lopes, M. C., Quiles, M. G., Dias, L. G., & Silva, J. L. F. da. (2022). Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining. Journal of Chemical Information and Modeling, 62( 19), 4702–4712. doi:10.1021/acs.jcim.2c00748
    • NLM

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
    • Vancouver

      Moraes AS, Pinheiro GA, Lourenço T da C, Lopes MC, Quiles MG, Dias LG, Silva JLF da. Screening of the Role of the Chemical Structure in the Electrochemical Stability Window of Ionic Liquids: DFT Calculations Combined with Data Mining [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 19): 4702–4712.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.2c00748
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: CANABINOIDES, SIMULAÇÃO, TRANSTORNOS RELACIONADOS AO USO DE SUBSTÂNCIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Jade Simões de e RODRIGUES, Caio Henrique Pinke e BRUNI, Aline Thaís. In silico infrared characterization of synthetic cannabinoids by quantum chemistry and chemometrics. Journal of Chemical Information and Modeling, v. 60, n. 4, p. 2100-2114, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00871. Acesso em: 09 nov. 2025.
    • APA

      Castro, J. S. de, Rodrigues, C. H. P., & Bruni, A. T. (2020). In silico infrared characterization of synthetic cannabinoids by quantum chemistry and chemometrics. Journal of Chemical Information and Modeling, 60( 4), 2100-2114. doi:10.1021/acs.jcim.9b00871
    • NLM

      Castro JS de, Rodrigues CHP, Bruni AT. In silico infrared characterization of synthetic cannabinoids by quantum chemistry and chemometrics [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 4): 2100-2114.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.9b00871
    • Vancouver

      Castro JS de, Rodrigues CHP, Bruni AT. In silico infrared characterization of synthetic cannabinoids by quantum chemistry and chemometrics [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 4): 2100-2114.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.9b00871
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: BATERIAS ELÉTRICAS, ENERGIA ELÉTRICA, SÓDIO, POTÁSSIO, ELETROQUÍMICA, SOLUÇÕES ELETROLÍTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Rafael Maglia de et al. Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 485-499, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00750. Acesso em: 09 nov. 2025.
    • APA

      Souza, R. M. de, Siqueira, L. J. A. de, Karttunen, M., & Dias, L. G. (2020). Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries. Journal of Chemical Information and Modeling, 60( 2), 485-499. doi:10.1021/acs.jcim.9b00750
    • NLM

      Souza RM de, Siqueira LJA de, Karttunen M, Dias LG. Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 485-499.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.9b00750
    • Vancouver

      Souza RM de, Siqueira LJA de, Karttunen M, Dias LG. Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 485-499.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.9b00750
  • Source: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Subjects: LIPÍDEOS, ELETROSTÁTICA, MOLÉCULA, QUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Rafael Maglia de et al. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 522-536, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00790. Acesso em: 09 nov. 2025.
    • APA

      Souza, R. M. de, Ratochinski, R. H., Karttunen, M., & Dias, L. G. (2020). Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles. Journal of Chemical Information and Modeling, 60( 2), 522-536. doi:10.1021/acs.jcim.9b00790
    • NLM

      Souza RM de, Ratochinski RH, Karttunen M, Dias LG. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 522-536.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.9b00790
    • Vancouver

      Souza RM de, Ratochinski RH, Karttunen M, Dias LG. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 522-536.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.9b00790

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025