Filtros : "Communications in Nonlinear Science and Numerical Simulation" "SISTEMAS DINÂMICOS" Removido: "IFSC" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 05 nov. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, MECÂNICA CELESTE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Vitor Martins de. Multistability and complexity in the planar spin-orbit problem. Communications in Nonlinear Science and Numerical Simulation, v. 150, n. artigo 109024, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109024. Acesso em: 05 nov. 2025.
    • APA

      Oliveira, V. M. de. (2025). Multistability and complexity in the planar spin-orbit problem. Communications in Nonlinear Science and Numerical Simulation, 150( artigo 109024), 1-13. doi:10.1016/j.cnsns.2025.109024
    • NLM

      Oliveira VM de. Multistability and complexity in the planar spin-orbit problem [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 150( artigo 109024): 1-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109024
    • Vancouver

      Oliveira VM de. Multistability and complexity in the planar spin-orbit problem [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 150( artigo 109024): 1-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109024
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: FFCLRP

    Subjects: SINGULARIDADES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, v. 134, p. 1-31, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108012. Acesso em: 05 nov. 2025.
    • APA

      Carvalho, T. de. (2024). Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, 134, 1-31. doi:10.1016/j.cnsns.2024.108012
    • NLM

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
    • Vancouver

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: REDES COMPLEXAS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YE, Jiachen et al. Performance measures after perturbations in the presence of inertia. Communications in Nonlinear Science and Numerical Simulation, v. 97, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2021.105727. Acesso em: 05 nov. 2025.
    • APA

      Ye, J., Peron, T., Lin, W., Kurths, J., & Ji, P. (2021). Performance measures after perturbations in the presence of inertia. Communications in Nonlinear Science and Numerical Simulation, 97, 1-10. doi:10.1016/j.cnsns.2021.105727
    • NLM

      Ye J, Peron T, Lin W, Kurths J, Ji P. Performance measures after perturbations in the presence of inertia [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 97 1-10.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2021.105727
    • Vancouver

      Ye J, Peron T, Lin W, Kurths J, Ji P. Performance measures after perturbations in the presence of inertia [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 97 1-10.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2021.105727
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: EP

    Subjects: SISTEMAS DINÂMICOS, CAOS (SISTEMAS DINÂMICOS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Rodrigo T. e EISENCRAFT, Marcio. A digital bandlimited chaos-based communication system. Communications in Nonlinear Science and Numerical Simulation, v. 37, p. 374-385, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2015.12.023. Acesso em: 05 nov. 2025.
    • APA

      Fontes, R. T., & Eisencraft, M. (2016). A digital bandlimited chaos-based communication system. Communications in Nonlinear Science and Numerical Simulation, 37, 374-385. doi:10.1016/j.cnsns.2015.12.023
    • NLM

      Fontes RT, Eisencraft M. A digital bandlimited chaos-based communication system [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 37 374-385.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2015.12.023
    • Vancouver

      Fontes RT, Eisencraft M. A digital bandlimited chaos-based communication system [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 37 374-385.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2015.12.023

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025