Source: Soil Advances. Unidade: ESALQ
Subjects: APRENDIZADO COMPUTACIONAL, CONDUTIVIDADE ELÉTRICA, DISTRIBUIÇÃO ESPACIAL, GAMAESPECTROMETRIA, MAPEAMENTO DO SOLO, SENSOR, SOLOS
ABNT
MELLO, Danilo César de et al. Integrating proximal geophysical sensing and machine learning for digital soil mapping: spatial prediction and model evaluation using a small dataset. Soil Advances, v. 3, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.soilad.2024.100024. Acesso em: 08 out. 2025.APA
Mello, D. C. de, Veloso, G. V., Mello, M. F. de, Lana, M. G. de, Oliveira, I. de A., Mello, F. A. de O., et al. (2025). Integrating proximal geophysical sensing and machine learning for digital soil mapping: spatial prediction and model evaluation using a small dataset. Soil Advances, 3, 1-13. doi:10.1016/j.soilad.2024.100024NLM
Mello DC de, Veloso GV, Mello MF de, Lana MG de, Oliveira I de A, Mello FA de O, Siqueira RG, Gomes LC, Fernandes-Filho EI, Schaefer CEGR, Francelino MR, Leite EP, Ferreira TO, Demattê JAM. Integrating proximal geophysical sensing and machine learning for digital soil mapping: spatial prediction and model evaluation using a small dataset [Internet]. Soil Advances. 2025 ; 3 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.soilad.2024.100024Vancouver
Mello DC de, Veloso GV, Mello MF de, Lana MG de, Oliveira I de A, Mello FA de O, Siqueira RG, Gomes LC, Fernandes-Filho EI, Schaefer CEGR, Francelino MR, Leite EP, Ferreira TO, Demattê JAM. Integrating proximal geophysical sensing and machine learning for digital soil mapping: spatial prediction and model evaluation using a small dataset [Internet]. Soil Advances. 2025 ; 3 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.soilad.2024.100024