Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms (2022)
- Authors:
- USP affiliated authors: FERREIRA, TIAGO OSORIO - ESALQ ; DEMATTE, JOSE ALEXANDRE MELO - ESALQ ; MELLO, FELLIPE ALCANTARA DE OLIVEIRA - ESALQ
- Unidade: ESALQ
- DOI: 10.1016/j.catena.2022.106370
- Subjects: ALGORITMOS; APRENDIZADO COMPUTACIONAL; SENSOR; SOLOS
- Keywords: Argiluviação; Ferratização
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MELLO, Danilo Cesar de et al. Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms. Catena, v. 216, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.catena.2022.106370. Acesso em: 12 fev. 2026. -
APA
Mello, D. C. de, Ferreira, T. O., Veloso, G. V., Lana, M. G. de, Mello, F. A. de O., Di Raimo, L. A. D. L., et al. (2022). Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms. Catena, 216, 1-15. doi:10.1016/j.catena.2022.106370 -
NLM
Mello DC de, Ferreira TO, Veloso GV, Lana MG de, Mello FA de O, Di Raimo LADL, Schaefer CEGR, Francelino MR, Fernandes-Filho EI, Dematte JAM. Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms [Internet]. Catena. 2022 ; 216 1-15.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.catena.2022.106370 -
Vancouver
Mello DC de, Ferreira TO, Veloso GV, Lana MG de, Mello FA de O, Di Raimo LADL, Schaefer CEGR, Francelino MR, Fernandes-Filho EI, Dematte JAM. Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms [Internet]. Catena. 2022 ; 216 1-15.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.catena.2022.106370 - Digital mapping of soil weathering using field geophysical sensor data coupled with covariates and machine learning
- Integrating proximal geophysical sensing and machine learning for digital soil mapping: spatial prediction and model evaluation using a small dataset
- A framework based on isoparameters for clustering and mapping geophysical data in pedogeomorphological studies
- Global warming may turn ice-free areas of Maritime and Peninsular Antarctica into potential soil organic carbon sinks
- Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning
- A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
- Remote sensing technologies for digital soil mapping: applications for agriculture and environmental planning
- Compartimentação da paisagem via relevo e rede de drenagem e sua relação com atributos e classes de solos
- Combining multiple methods for automated soil delineation: from traditional to digital
- Strategies for predictive digital soil mapping by geophysical, remote sensing and machine learning approaches
Informações sobre o DOI: 10.1016/j.catena.2022.106370 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3079545-Pedogenetic_proce... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
