Strategies for predictive digital soil mapping by geophysical, remote sensing and machine learning approaches (2026)
- Authors:
- Veloso, Gustavo Vieira
- Mello, Danilo César de
- Silva, Lucas Vieira
- Fernandes-Filho, Elpídio Inácio
- Rosas, Jorge Tadeu Fim

- Mello, Fellipe Alcantara de Oliveira

- Souza, José João Lelis Leal de
- Francelino, Márcio Rocha
- Santos, Sara Ramos dos
- Firmino, Francis Henrique Tenório
- Rosin, Nícolas Augusto

- Sousa, Gabriel Pimenta Barbosa de

- Ferreira, Tiago Osório

- Souza, Arnaldo Barros e
- Demattê, José Alexandre Melo

- USP affiliated authors: FERREIRA, TIAGO OSORIO - ESALQ ; DEMATTE, JOSE ALEXANDRE MELO - ESALQ ; SOUZA, ARNALDO BARROS E - ESALQ ; ROSAS, JORGE TADEU FIM - ESALQ ; MELLO, FELLIPE ALCANTARA DE OLIVEIRA - ESALQ ; ROSIN, NÍCOLAS AUGUSTO - ESALQ ; SOUSA, GABRIEL PIMENTA BARBOSA DE - ESALQ
- Unidade: ESALQ
- DOI: 10.1016/j.catena.2026.109822
- Subjects: APRENDIZADO COMPUTACIONAL; IMAGEAMENTO DE SATÉLITE; LEVANTAMENTO DO SOLO; MAPEAMENTO DO SOLO; PEDOLOGIA; SENSORIAMENTO REMOTO
- Keywords: Levantamento geofísico; Pedometria
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
VELOSO, Gustavo Vieira et al. Strategies for predictive digital soil mapping by geophysical, remote sensing and machine learning approaches. Catena, v. 264, p. 1-19, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.catena.2026.109822. Acesso em: 10 fev. 2026. -
APA
Veloso, G. V., Mello, D. C. de, Silva, L. V., Fernandes-Filho, E. I., Rosas, J. T. F., Mello, F. A. de O., et al. (2026). Strategies for predictive digital soil mapping by geophysical, remote sensing and machine learning approaches. Catena, 264, 1-19. doi:10.1016/j.catena.2026.109822 -
NLM
Veloso GV, Mello DC de, Silva LV, Fernandes-Filho EI, Rosas JTF, Mello FA de O, Souza JJLL de, Francelino MR, Santos SR dos, Firmino FHT, Rosin NA, Sousa GPB de, Ferreira TO, Souza AB e, Demattê JAM. Strategies for predictive digital soil mapping by geophysical, remote sensing and machine learning approaches [Internet]. Catena. 2026 ; 264 1-19.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.catena.2026.109822 -
Vancouver
Veloso GV, Mello DC de, Silva LV, Fernandes-Filho EI, Rosas JTF, Mello FA de O, Souza JJLL de, Francelino MR, Santos SR dos, Firmino FHT, Rosin NA, Sousa GPB de, Ferreira TO, Souza AB e, Demattê JAM. Strategies for predictive digital soil mapping by geophysical, remote sensing and machine learning approaches [Internet]. Catena. 2026 ; 264 1-19.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.catena.2026.109822 - Digital mapping of soil weathering using field geophysical sensor data coupled with covariates and machine learning
- Pedogenetic processes operating at different intensities inferred by geophysical sensors and machine learning algorithms
- Impact of mining-induced deforestation on soil surface temperature and carbon stocks: a case study using remote sensing in the Amazon rainforest
- Spatial prediction of soil depth by the combination of multiple remote sensing techniques
- Soil laboratory and satellite spectral data filtering: a spectral quality protocol (SQuaP)
- Soybean yield response to undetailed soil limits and precipitation
- Integrating terrestrial and orbital reflectance data improves the soil attribute modeling performance
- Assessing soil degradation in Brazilian agriculture by a remote sensing approach to monitor bare soil frequency: impact on soil carbon
- Integrating proximal geophysical sensing and machine learning for digital soil mapping: spatial prediction and model evaluation using a small dataset
- Proximal and orbital sensing to assist in clay content and yield potential mapping in agricultural fields
Informações sobre o DOI: 10.1016/j.catena.2026.109822 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
