Combining multiple methods for automated soil delineation: from traditional to digital (2022)
- Authors:
- USP affiliated authors: DEMATTE, JOSE ALEXANDRE MELO - ESALQ ; MELLO, FELLIPE ALCANTARA DE OLIVEIRA - ESALQ ; DOTTO, ANDRÉ CARNIELETTO - ESALQ ; MARQUES, KARINA PATRICIA PRAZERES - ESALQ
- Unidade: ESALQ
- DOI: 10.1071/SR21067
- Subjects: AEROFOTOGRAMETRIA; IMAGEM DIGITAL; MAPEAMENTO DO SOLO; PEDOLOGIA; SENSORIAMENTO REMOTO
- Language: Inglês
- Imprenta:
- Source:
- Título: Soil Research
- ISSN: 1838-6768
- Volume/Número/Paginação/Ano: p. 1-15, July 2022
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MELLO, Fellipe Alcantara de Oliveira et al. Combining multiple methods for automated soil delineation: from traditional to digital. Soil Research, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1071/SR21067. Acesso em: 27 dez. 2025. -
APA
Mello, F. A. de O., Demattê, J. A. M., Dotto, A. C., Marques, K. P. P., Mello, D. C. de, Menezes, M. D., et al. (2022). Combining multiple methods for automated soil delineation: from traditional to digital. Soil Research, 1-15. doi:10.1071/SR21067 -
NLM
Mello FA de O, Demattê JAM, Dotto AC, Marques KPP, Mello DC de, Menezes MD, Silva SHG, Curi N. Combining multiple methods for automated soil delineation: from traditional to digital [Internet]. Soil Research. 2022 ; 1-15.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1071/SR21067 -
Vancouver
Mello FA de O, Demattê JAM, Dotto AC, Marques KPP, Mello DC de, Menezes MD, Silva SHG, Curi N. Combining multiple methods for automated soil delineation: from traditional to digital [Internet]. Soil Research. 2022 ; 1-15.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1071/SR21067 - Carbonates and organic matter in soils characterized by reflected energy from 350-25000 nm wavelength
- A regional legacy soil dataset for prediction of sand and clay content with Vis-Nir-Swir, in Southern Brazil
- Identification of minerals in subtropical soils with different textural classes by VIS–NIR–SWIR reflectance spectroscopy
- Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths
- Sensor-based field methods for pedology and soil surveys: protocol suggestions for Brazilian tropical soils
- Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil
- Chemometric soil analysis on the determination of specific bands for the detection of magnesium and potassium by spectroscopy
- Robust soil mapping at the farm scale with vis–NIR spectroscopy
- Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning
- Digital mapping of soil weathering using field geophysical sensor data coupled with covariates and machine learning
Informações sobre o DOI: 10.1071/SR21067 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
