Filtros : "Financiamento FAPESP" "Indexado no Web of Science" "Irlanda" Limpar

Filtros



Refine with date range


  • Source: Ecological Informatics. Unidade: ICMC

    Subjects: REDES NEURAIS, RECONHECIMENTO DE PADRÕES, ACÚSTICA, MONITORAMENTO AMBIENTAL, PÁSSAROS, ANURA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Fabio Felix e PONTI, Moacir Antonelli e MINGHIM, Rosane. Enhancing sound-based classification of birds and anurans with spectrogram representations and acoustic indices in neural network architectures. Ecological Informatics, v. 90, p. 1-12, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.ecoinf.2025.103232. Acesso em: 08 out. 2025.
    • APA

      Dias, F. F., Ponti, M. A., & Minghim, R. (2025). Enhancing sound-based classification of birds and anurans with spectrogram representations and acoustic indices in neural network architectures. Ecological Informatics, 90, 1-12. doi:10.1016/j.ecoinf.2025.103232
    • NLM

      Dias FF, Ponti MA, Minghim R. Enhancing sound-based classification of birds and anurans with spectrogram representations and acoustic indices in neural network architectures [Internet]. Ecological Informatics. 2025 ; 90 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ecoinf.2025.103232
    • Vancouver

      Dias FF, Ponti MA, Minghim R. Enhancing sound-based classification of birds and anurans with spectrogram representations and acoustic indices in neural network architectures [Internet]. Ecological Informatics. 2025 ; 90 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.ecoinf.2025.103232
    GDS 15. Life on land
  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE PADRÕES, ACÚSTICA, MONITORAMENTO AMBIENTAL, PÁSSAROS, ANURA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Fabio Felix e PONTI, Moacir Antonelli e MINGHIM, Rosane. A classification and quantification approach to generate features in soundscape ecology using neural networks. Neural Computing and Applications, v. 34, n. 3, p. 1923-1937, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00521-021-06501-w. Acesso em: 08 out. 2025.
    • APA

      Dias, F. F., Ponti, M. A., & Minghim, R. (2022). A classification and quantification approach to generate features in soundscape ecology using neural networks. Neural Computing and Applications, 34( 3), 1923-1937. doi:10.1007/s00521-021-06501-w
    • NLM

      Dias FF, Ponti MA, Minghim R. A classification and quantification approach to generate features in soundscape ecology using neural networks [Internet]. Neural Computing and Applications. 2022 ; 34( 3): 1923-1937.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00521-021-06501-w
    • Vancouver

      Dias FF, Ponti MA, Minghim R. A classification and quantification approach to generate features in soundscape ecology using neural networks [Internet]. Neural Computing and Applications. 2022 ; 34( 3): 1923-1937.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00521-021-06501-w
  • Source: Information. Unidade: ICMC

    Subjects: VISUALIZAÇÃO, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE PADRÕES, SOM, MONITORAMENTO BIOLÓGICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUANCAPAZA, Liz e RIBEIRO, Milton Cezar e MINGHIM, Rosane. Visual active learning for labeling: a case for soundscape ecology data. Information, v. 12, n. 7, p. 1-17, 2021Tradução . . Disponível em: https://doi.org/10.3390/info12070265. Acesso em: 08 out. 2025.
    • APA

      Huancapaza, L., Ribeiro, M. C., & Minghim, R. (2021). Visual active learning for labeling: a case for soundscape ecology data. Information, 12( 7), 1-17. doi:10.3390/info12070265
    • NLM

      Huancapaza L, Ribeiro MC, Minghim R. Visual active learning for labeling: a case for soundscape ecology data [Internet]. Information. 2021 ; 12( 7): 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.3390/info12070265
    • Vancouver

      Huancapaza L, Ribeiro MC, Minghim R. Visual active learning for labeling: a case for soundscape ecology data [Internet]. Information. 2021 ; 12( 7): 1-17.[citado 2025 out. 08 ] Available from: https://doi.org/10.3390/info12070265
  • Source: Computational and Applied Mathematics. Unidade: ICMC

    Subjects: PROBLEMAS INVERSOS, MÉTODOS NUMÉRICOS, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REDDY, Gujji Murali Mohan et al. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, v. 40, p. 1-26, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40314-021-01454-1. Acesso em: 08 out. 2025.
    • APA

      Reddy, G. M. M., Nanda, P., Vynnycky, M., & Cuminato, J. A. (2021). An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, 40, 1-26. doi:10.1007/s40314-021-01454-1
    • NLM

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
    • Vancouver

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
  • Source: Algorithms. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, MINERAÇÃO DE DADOS, VISUALIZAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTELO, Sonia e PONTI, Moacir Antonelli e MINGHIM, Rosane. A visual mining approach to improved multiple-instance learning. Algorithms, v. 14, n. 12, p. 1-28, 2021Tradução . . Disponível em: https://doi.org/10.3390/a14120344. Acesso em: 08 out. 2025.
    • APA

      Castelo, S., Ponti, M. A., & Minghim, R. (2021). A visual mining approach to improved multiple-instance learning. Algorithms, 14( 12), 1-28. doi:10.3390/a14120344
    • NLM

      Castelo S, Ponti MA, Minghim R. A visual mining approach to improved multiple-instance learning [Internet]. Algorithms. 2021 ; 14( 12): 1-28.[citado 2025 out. 08 ] Available from: https://doi.org/10.3390/a14120344
    • Vancouver

      Castelo S, Ponti MA, Minghim R. A visual mining approach to improved multiple-instance learning [Internet]. Algorithms. 2021 ; 14( 12): 1-28.[citado 2025 out. 08 ] Available from: https://doi.org/10.3390/a14120344

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025