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 A B S T R A C T

Research on habitat monitoring via passive acoustics has generated vast audio resources for soundscape 
ecology, calling for automated methods to aid data analysis. While Deep Neural Networks excel in classification 
tasks, their application to audio collected in the wild presents several challenges compared to other audio 
sources. Nature recordings present ambient noise, sparsity of targeted events, various vocalizations attributed 
to the same species, and fine-grained sound variance. In addition to sound characterization, we lack annotated 
datasets of suitable size to train networks accurately for detecting and identifying animal species. To 
leverage the best from these models, this work investigates different audio input representations, particularly 
spectrogram-based and acoustic indices, which are pre-processed features extracted from audio sources. We 
evaluate the impact of combining both input categories, often treated separately, in various architectures, 
employing quantification in the training process as well as transfer learning. With that, we propose guidelines 
for using neural networks to classify species based on their sound patterns, even for a small dataset. We have 
evaluated these guidelines with a dataset collected in Brazil under different environmental conditions and a 
dataset for detecting and classifying acoustic scenes and events. The empirical results ratify that the pre-trained 
network learns better (accuracy up to 0.91); that using acoustic features can improve the results marginally 
(up to 13 percentage points of difference) depending on the time-frequency input and main architecture; and 
that combining spectrogram representations with acoustic features yields the best results (accuracy up to 0.91).
1. Introduction

Sound is a rich source of information related to animal and land-
scape changes and the impact of human activities in natural areas, 
thus supporting applications such as measuring environmental health 
and biodiversity (Servick, 2014). The combination of sounds in a 
landscape is known as soundscape and the study of relations between 
biological, geophysical, and anthropological sounds is referred to as 
Soundscape Ecology (Servick, 2014; Krause, 1987; Pijanowski et al., 
2011; Scarpelli et al., 2020), bioacoustics (Laiolo, 2010; Penar et al., 
2020), or ecoacoustics (Sueur and Farina, 2015; Farina and Gage, 
2017). This area has taken advantage of large databases collected with 
passive acoustic monitoring (PAM) devices, which record sounds during 
long periods and produce several terabytes of data (Thomas et al., 
2019). PAM reduces observer bias, creates a permanent base for fur-
ther analysis, generates negligible disturbance on species and habitats, 
and increases the probability of detecting rare species (Pieretti et al., 
2017; Znidersic et al., 2020). Such data can be used in the context of 
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Soundscape Ecology, for example, to classify target sounds of bird and 
anuran species, because those are considered bio-indicators, i.e., their 
presence and behavior are proxy measures that reflect the state of 
environment (Mitchell et al., 2020; Strout et al., 2017). However, such 
an amount of data brings great challenges when exploring, analyzing, 
and extracting meaningful ecological information.

In such a challenging case, data science and analytics tools based on 
handcrafted features, so-called Acoustic Indices, and neural networks 
are widely used in environmental sound analysis. Acoustic Indices 
have been largely employed to assess sound dynamics and biodiversity 
attributes (Bradfer-Lawrence et al., 2019; Dröge et al., 2021; Scarpelli 
et al., 2021; Sueur et al., 2014). Furthermore, Convolutional Neural 
Networks (CNN) are a type of network largely employed for audio 
classification models, having capabilities of recognizing patterns in 
spectrograms related to frequency modulation, as well as identifying 
time-frequency patterns related to different natural sounds (Salamon 
and Bello, 2017).
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In that context, different CNN flavors were explored for species de-
tection due to differences in data patterns, data availability, and model 
assumptions (Cakir et al., 2017; Kirsebom et al., 2020; Shiu et al., 
2020). For instance, BirdVoxDetect (Lostanlen et al., 2019) is a pre-
trained model to detect the presence of avian flight calls that yielded 
an area under the precision–recall curve (AUPRC) greater than 76%. 
The architecture is a variation of context-adaptive network (Delcroix 
et al., 2015) that contains two branches: the main branch derived 
from the model proposed by Salamon and Bello (2017) and an aux-
iliary branch with one convolutional layer followed by one dense (also 
known as fully connected) layer. They fed the main branch with either 
mel-spectrogram or per-channel energy normalization (PCEN) and the 
auxiliary branch with statistical measures of the power spectral density. 
With their results, a combination of PCEN, context-adaptive network 
with adaptive threshold, and data augmentation improved the results 
of architectures trained with mel-spectrograms. BirdNET (Kahl et al., 
2021b) was trained to classify 984 different bird species from Europe 
and North America that generated a mean average precision (mAP) 
of 0.79. Authors used mel-spectrograms as input to a model based on 
ResNet-50 with architecture and modifications inspired by Zagoruyko 
and Komodakis (2016), He et al. (2019) and Schlüter (2018). In an-
other example, Strout et al. (2017) used CNN architectures to generate 
features that feed a Support Vector Machine (SVM) to classify 15 
anuran species, obtaining accuracy up to 77%. They used models like 
R-CNN (Girshick et al., 2014), AlexNet (Krizhevsky et al., 2012), and 
CaffeNet (Jia et al., 2014), pre-trained with ImageNet (Deng et al., 
2009) as feature extractors of spectrogram images. Xie et al. (2022) cre-
ated a lightweight CNN model to detect the presence of a specific frog 
species. They performed a frequency selection, fed the network with a 
multi-view spectrogram (3 dimensions) based on mel-spectrogram vari-
ations, and created a loss function that combines binary cross-entropy 
and focal loss (Lin et al., 2017). The model achieved an F1-score 
of 96.4 ± 2.0 with fewer parameters than a VGGish model. LeBien 
et al. (2020) used RestNet-50 pre-trained on the ImageNet database 
and added a pooling layer and two dense layers with dropout on the 
architecture top. The model can classify mel-spectrograms of 24 bird 
and frog species, yielding a mAP equal to 0.893 and a total average 
precision of 0.975. Following these and many other references, CNNs 
remain more accessible due to their reduced parameter sizes, allowing 
training even with under low computational resources, although we 
acknowledge that Vision Transformers are also gaining traction in this 
field (Tang et al., 2023). CNNs also have a lower volume requirement 
for training. In recent challenges, CNNs demonstrated effectiveness 
in achieving higher results than transformer-based ones (Kahl et al., 
2021a).

Such previous studies have shown high metric values, e.g., accuracy 
and precision above 70%, when identifying sound sources. However, 
they differ in using architectures, input representation, and used met-
rics. Some given architecture and training strategy that works for a 
specific scenario and dataset may not generalize to other data due to 
inherent optimization problems and lack of learning guarantees (Ponti 
et al., 2021). Moreover, proper detection of animal sounds can be 
affected by other animal vocalizations, geophysical noise, sounds from 
human activities, and electronic recorder noise (Kahl et al., 2021b). 
This is relevant since PAM is recording ‘‘in the wild’’, an unconstrained 
environment. To mitigate issues related to small labeled datasets and 
improve model generalization, researchers use techniques such as data 
augmentation (Salamon and Bello, 2017; Lostanlen et al., 2019; Paras-
candolo et al., 2016). Furthermore, transfer learning (Strout et al., 
2017; LeBien et al., 2020; Kong et al., 2020) is also applied to improve 
models’ generalization by leveraging the learned knowledge of different 
datasets and tasks.

Even with large applicability in species detection, there is no consis-
tent knowledge about the best inputs to feed a neural network identifier 
to handle a specific or more generic range of sounds. For example, 
while mel-spectrogram is known to be largely employed in sound 
2 
classification, we do not know whether it is always the best representa-
tion (Purwins et al., 2019). A combination of both signal and other fea-
ture representations could also be investigated, for instance (Lostanlen 
et al., 2019) combined time-frequency representations with statistical 
features from the power spectral density, Aytar et al. (2016) combined 
audio signal with video frames to create enhanced semantically rich 
representations, and Jeantet and Dufourq (2023) combined metadata 
such as time and location with spectrograms to improve detection of 
birds and primates. Even with studies presenting methods for network 
weights initialization (Dufourq et al., 2022), building a road-map to 
apply neural networks to natural sound classification (Stowell, 2022), 
or even analyzing different input frontends (Ghaffari and Devos, 2024), 
there is space for better evaluation of input types, pre-processing steps, 
network architectures, training process, so that on can adapt the models 
to the best input representations.

In the present study, we investigate a pipeline to evaluate important 
choices to improve the learned representations even for a difficult 
problem, such as the classification of sound captured in the wild and 
the code and best models are available on GitHub.1

In summary, we investigate:

• different time-frequency (spectrogram, mel-spectrogram, and per-
channel energy normalization) as input to CNNs and different 
combination strategies of such representations,

• combination (fusion) of time-frequency and handcrafted features,
• different architectures, pre-training, and normalization strategies,
• and a custom loss function combining classification and quan-
tification (see Section 2.6.4) to compare with previous results 
reported by Dias et al. (2021b).

Over these points, the main empirical evidence suggests that mel-
spectrogram is a proper representation for the tested sound patterns 
and that feature combination (or fusion) can be more effective on small 
architectures. Smaller models require less data to train Mello and Ponti 
(2018), as well as reduce energy requirements for inference for a more 
sustainable setup (Ferro et al., 2023). Therefore, it is a step towards 
allowing such systems to be deployed for local processing in the wild.

The remainder of this text is organized as follows. Section 2 presents 
the steps followed and the materials used in our experiments. Section 3 
reports the experimental results obtained with the experiments. Sec-
tion 4 discusses the experimental results. Finally, Section 5 provides 
the conclusions and directions for future work.

2. Method

This section describes the blocks in Fig.  1, which represent the 
steps for training and evaluating the models and their combinations 
with different inputs. In the first step, the training subset presented 
in Table  1 was balanced by applying data augmentation approaches 
for the sound signal (Fig.  1 left blocks). We extracted acoustic features 
from the dataset during the second step (Fig.  1 bottom-center blocks) 
and trained and evaluated a linear classifier to create a baseline. We 
also extracted different time-frequency representations of the data (Fig. 
1 top center blocks) and trained the neural networks following Fig.  1 
rightmost blocks. The next sections detail each of these steps. 

2.1. Datasets

The main dataset in our experiments (Fig.  1 leftmost side) consists 
of recordings collected on natural landscapes and provided by professor 
Mílton C. Ribeiro from the Spatial Ecology and Conservation Lab 
(LEEC),2 at the São Paulo State University, Rio Claro, Brazil, as pre-

1 github.com/fabiofelix/CNN-Input-Combination.
2 github.com/LEEClab.
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Fig. 1. Steps of the training pipeline investigated and the specific choices made. The description focuses only on the training process, and their details and evaluation are described 
in this text.
viously explored with other techniques (Scarpelli et al., 2021; Hilasaca 
et al., 2021a,b). The sounds were recorded in the Ecological Corridor of
Cantareira-Mantiqueira, São Paulo state, Brazil, between October 2016 
and January 2017, We employed audio files recorded from 5 a.m. 
to 8:25 a.m. (to capture bird sounds) and from 6:30 p.m. to 10:45 
p.m. (to capture anuran sounds). As reported in previous work cited 
above, sounds were recorded in different places, named as open (mainly 
agricultural and pasture areas), forest (Atlantic Forest remnants), and 
stream (forest fragments near water bodies). All recordings are mono 
in WAVEform (WAV) audio format, recorded at a sampling rate of 
44,100 Hz, 16-bit depth, and Pulse Code Modulation (PCM).

Moreover, following Kahl et al. (2021b), we added instances from 
AudioSet (Gemmeke et al., 2017) to improve representation learning by 
allowing models to differentiate sounds of interest from other sounds. 
Using the available ontology3 of the AudioSet, we downloaded sounds 
from different classes and saved them with the same format, sam-
pling rate, bit-depth, and modulation of the other recordings. AudioSet 
recordings have approximately 10 s and were split into clips of three 
seconds. To download AudioSet recordings, we employed Python and 
youtube-dl (v2021.4.26) library.

Bird and anuran experts labeled 12 species of interest, detailed in 
Table  1, following the methodology described by Gaspar (Gaspar et al., 
2023), using tools like Raven Pro,4 and labeling only one species. They 
annotated one vocalization per species per 1 min audio file, even when 
the animal called more than once. We extracted only the annotated 
parts from each recording, splitting them into 3-s clips and padding 
the clips with adjacent parts when they did not fit three seconds. 
Therefore, our main dataset contains only labeled parts of the recording 
related to events of interest. Although the audio clips may contain other 
sound sources, such as insects and background noise, those were not 
annotated. For AudioSet, we considered sounds of animals such as dogs, 
birds, insects, etc.; natural sounds, such as windows, thunder, rain, etc.; 
and human sounds, such as engines, piano, singing, etc., generating 
three classes. Hence, the full task considered 15 classes in total.

The resulting dataset was split using a stratified method of the 
classes in training (90%) and test (10%), totaling 5000 clips of tree 
seconds (250 min. in total), as presented in Table  1. These subsets con-
tain data from the three recorded places (open, forest, and stream) and 
AudioSet sounds, ensuring the models have access to many variations, 
and the evaluation also covers them. Following Fig.  1 top-right blocks, 
we applied 𝑘-fold cross-validation with 𝑘 = 5 in the training subset and 
for each iteration, one partition was used as a validation subset.

3 research.google.com/audioset/ontology/index.html.
4 ravensoundsoftware.com/software/raven-pro/.
3 
Table 1
Quantities of 3-s audio clips grouped by species and named with a short label. The 
column original communicates the number of original recordings per class. There could 
be file overlaps, where a single recording has multiple classes annotated, and a single 
animal call may generate several 3-s clips. 
 Specie Label #original #train #test Total 
 

Bird

Basileuterus culicivorus basi_culi 533 483 54 537  
 Cyclarhis gujanensis cycl_guja 428 390 43 433  
 Myiothlypis leucoblephara myio_leuc 266 411 46 457  
 Pitangus sulphuratus pita_sulp 368 352 39 391  
 Vireo chivi vire_chiv 778 724 81 805  
 Zonotrichia capensis zono_cape 631 574 64 638  
 2934 327 3261 
 

Anuran

Adenomera marmorata aden_marm 94 116 13 129  
 Aplastodiscus leucopigyus apla_leuc 175 186 21 207  
 Boana albopunctata boan_albo 267 283 32 315  
 Dendropsophus minutus dend_minu 169 229 26 255  
 Ischnocnema guenteri isch_guen 114 136 15 151  
 Physalaemus cuvieri phys_cuvi 257 290 32 322  
 1240 139 1379 
 
Other

Animal 51 108 12 120  
 Human 51 109 11 120  
 Natural 51 109 11 120  
 326 34 360  
 Total 4500 500 5000 

We conducted additional tests to understand whether the proposed 
approach can be applied in other contexts. In those, we used an
additional dataset, consisting of part of the available dataset of Task 
5 from the Detection and Classification of Acoustic Scenes and Events 
(DCASE2024) (Liang et al., 2024). The WMW subset consists of record-
ings from the Western Mediterranean Wetlands Bird dataset, with 161 
recordings of different lengths annotated for 26 different classes of 20 
bird species. We removed classes with less than 10 samples and from 
the remaining 22 classes, we extracted 3604 clips of three seconds 
(180 min in total).

2.2. Balancing data classes

The dataset in Table  1 is slightly unbalanced and we used some 
data augmentation techniques (Salamon and Bello, 2017) (see Fig.  1 left 
blocks) to reduce possible problems, such as model poor generalization 
and improper predictions for samples of minority classes (Johnson and 
Khoshgoftaar, 2019; Wang et al., 2017b).

https://research.google.com/audioset/ontology/index.html
https://ravensoundsoftware.com/software/raven-pro/
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Our augmentation process generates 𝑚 = ⌈(max𝑐 −#𝑐𝑙𝑎𝑠𝑠)∕#𝑐𝑙𝑎𝑠𝑠⌉
modified copies of all 3-s training recordings and adds them to the 
original training subset to extract features and generate spectrograms. 
When cross-validation splits training files, it divides the set into 3600 
files (𝑘− 1 partitions) for training and 900 for validation. After that, it 
takes augmentations until each class in the training partitions reaches 
max𝑐 = 580 audio clips, generating a set with 8700 clips. The choice 
of 580 is to approach the majority class (Vireo chivi) in the training 
partitions. Hence, for the main dataset, each cross-validation iteration 
contains 8700 clips for training, 900 clips for validation, and 500 clips 
for testing. Following the same process for the additional dataset, with 
𝑚𝑎𝑥𝑐 = 565, each cross-validation iteration contains 10,282 clips for 
training, 649 clips for validation, and 361 for testing.

We considered pitch shifting, time stretching, noise addition, and ampli-
tude change as proposed by Salamon and Bello (2017) to increase sound 
variability, and followed the same implementations and parameters 
used in Dias et al. (2021b).

2.3. Handcrafted features

To create the feature set depicted in the bottom-center of Fig. 
1, we extracted, for each 3-s clip, 30 well-known acoustic features 
and measures. They were Bioacoustic Index (Bio) (Boelman et al., 
2007), a set composed of Temporal Entropy (𝐻𝑡), Frequency Entropy 
(𝐻𝑓 ), and Acoustic Entropy Index (H) (Sueur et al., 2008b), Acoustic 
Complexity Index (ACI) (Pieretti et al., 2011), Acoustic Evenness Index 
(AEI) (Villanueva-Rivera et al., 2011), Median of Amplitude Envelope 
(M) and Acoustic Richness (AR) (Depraetere et al., 2012), Normalized 
Difference Soundscape Index (NDSI) (Kasten et al., 2012), Acoustic 
Diversity Index (ADI) (Pekin et al., 2012), Number of Peaks (NP) (Gasc 
et al., 2013), Background noise index (BGN) (Dias et al., 2022), 
Sound Pressure Level (SPL) (Sánchez-Gendriz and Padovese, 2016), 
functions that describe signal variations, such as Roughness (Ramsay, 
2006) and Rugosity (Mezquida and Martínez, 2009), Root Mean Square 
(RMS) (Eldridge et al., 2018), the mean of the Power Spectral Den-
sity (PSD) (Welch, 1967), Signal-to-noise ratio (SNR) (Bedoya et al., 
2017), and twelve Mel-frequency Cepstrum Coefficients (MFCC) (Lo-
gan, 2000). Moreover, following approaches such as (Jeantet and 
Dufourq, 2023), information about the place (open, stream, and forest) 
and period (am and pm) of the recording was incorporated. We coded 
these place and period features with one-hot encoding and added five 
new features, generating a feature vector with 35 dimensions. These 
features can improve the training process by giving valuable informa-
tion about the environment and variations of sound patterns (Sueur 
et al., 2014).

We have extracted acoustic features with R packages Seewave 
(Sueur et al., 2008a) (v2.1.3), Soundecology (v1.3.3), and tuneR
(v1.3.3). For all routines with a max frequency parameter, we set it 
to 22.050 Hz (ADI, AEI, BIO, and NDSI biomax param) because this is 
the highest frequency captured by the recordings’ sampling rate. For 
all routines that depend on the Fourier Transform, we used a Hanning 
window with 1024-length and 10% of overlap (PSD, SPL, SNR, and 
H) to avoid elevating the processing time and memory usage. SPL and 
SNR values are calculated based on the PSD results. We reimplemented 
the seewave H index to fix memory usage problems, return 𝐻𝑡, 𝐻𝑓 , 
Hilbert envelope (used as input for RMS and BGN), return results of 
the internal meanspec function (used as input for Roughness, NP, and 
M) and configure it with aforementioned Fourier parameters. AR index 
was calculated with the aforesaid values of 𝐻𝑡 and M indices to reduce 
processing time. We also set the cluster size = 1 of soundecology ACI, 
allowing the calculation of 3-s files. The tuneR routine, which calculates 
MFCC, returns a matrix with coefficients (columns) and components 
(rows). Consequently, we used the column means for representing 
coefficients, and the first twelve of them were considered (Dias et al., 
2021a). We used the default parameters of this MFCC routine. The code 
that extracts all features is available on github.5

5 github.com/fabiofelix/AudioTools.
4 
2.4. Baseline definition

We used the Support Vector Machine (SVM) with linear kernel, 
𝑐𝑜𝑠𝑡 = 1, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 106, and the handcrafted features presented in 
Section 2.3 as input. In our experiments, normalization of the input 
values did not improve the results of SVM, thus, we did not consider 
normalizing the features. SVM was used owing to its lower bounds 
in terms of learning guarantees and its capacity to generate a proxy 
measure for the separability of the classes in a feature space (Mello 
and Ponti, 2018). We also performed cross-validation with 𝑘 = 5 in 
the training subset, trained the model with the training partitions, 
discarded validation partitions because we did not evaluate classifier 
parameters, and tested with the test subset of Table  1. All routines are 
available in scikit-learn (v0.22.1) (Pedregosa et al., 2011) with Python 
programming language.

2.5. Time-frequency representations

This section describes the time-frequency representation of Fig.  1 
top-center. This representation is a common approach to feed classifiers 
and visually analyze sound signal patterns, associating frequency spec-
trum and time and giving different views of the sound. We considered 
the spectrogram (Thomas et al., 2019; Strout et al., 2017; Casanova 
et al., 2022) and its variations, such as mel-spectrogram (LeBien et al., 
2020; Parascandolo et al., 2016; Cakır et al., 2017) and per-channel 
energy normalization (PCEN) (Lostanlen et al., 2019; Cramer et al., 
2020; Harvey, 2018) that is not only a time-frequency representation 
but also a denoising algorithm.

For all audio clips, gray-scale spectrograms (spec), mel-spectrograms
(mel), and PCEN (pcen) images (256 × 256) were created with librosa 
(v0.7.2) routines, using a Hanning window with a length of 2048, 
and an overlap of 75% (or hop length of 25%). Length and overlap 
contribute to building a representation with suitable frequency and 
time resolutions to represent a large pattern variation. In addition, mel-
spectrogram was configured to return 128 mel bands and PCEN used 
𝛿 = 2.0, 𝑟 = 0.5, and 𝛼 = 0.98, as the original paper (Wang et al., 2017a).

2.6. Model architectures and their variations

We employed four network architectures to fulfill the train block 
of the Fig.  1: a simple CNN2D trained from scratch (Dias et al., 
2021b); a non-hierarchical multitask model (named here as BirdVox) 
pre-trained on American Northeast Avian Flight Call Classification 
dataset (ANAFCC) (Cramer et al., 2020); ResNet-50 (He et al., 2016) 
and Inception-V3 (Szegedy et al., 2016) both pre-trained on Ima-
geNet (Deng et al., 2009). ResNet-50 is a common tool to classify 
animal species, based on their sounds (Thomas et al., 2019; LeBien 
et al., 2020; Harvey, 2018) and Inception has parallel filters with 
different sizes that vary the architecture width and can facilitate the 
learning of patterns with different sizes. BirdVox achieved well-suited 
results to classify birds and with CNN2D is possible to compare the 
other models with a small and trained from scratch model. Using 
models pre-trained on ImageNet is a common approach for transfer 
learning, as reported in some references in the introduction and the 
review of Dufourq et al. (2022). All models were trained and evaluated 
with spec, mel, pcen, and combinations (fusion) of inputs, and those 
images were normalized with max-norm, dividing pixel values by 255. 
In cases in which we did not perform input combinations, we attempted 
to change the models as little as possible to maintain their original 
characteristics.

To define the optimizer and learning rate (lr) of the pre-trained 
models, we tested three optimizers with a smaller learning rate than 
the programming API default values. That was default divided by 10, 
following the guidelines of Becher and Ponti (2021): Adam (𝑙𝑟 = 10−4), 
SGD (𝑙𝑟 = 10−3), and RMSprop (𝑙𝑟 = 10−4). RMSprop was the only 
one that presented lower accuracy with a lower learning rate than the 

https://github.com/fabiofelix/AudioTools
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default value, therefore, we maintained the default 𝑙𝑟 = 10−3. For the 
model trained from scratch, we conducted a grid search with SGD, 
fixing the 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0.9 and varying the 𝑙𝑟 ∈ [10−1, 10−2, 10−3, 10−4]
in addition to the tests with the other two optimizers. The optimizer 
configurations with the best average accuracy in the validation subsets 
were used for the tests. CNN2D has two convolutional layers followed 
by pooling and three dense layers (we did not use dropout). Stochastic 
gradient descent (SGD) optimizer (Bottou, 1998) was employed to 
minimize the loss function with a learning rate of 10−2, momentum 
0.9, 100 epochs, and batch size equal to 80. The optimizer, learning 
rate, and momentum increased the model results, and the batch size 
was limited by the memory of the video card.

We used similar preparations for both ResNet-50 and Inception-
V3. Our images are gray-scale (1-channel), thus we concatenated three 
copies of the input (3-channel) to use as inputs for ResNet and Incep-
tion. Furthermore, we added other top layers, a global average pooling, 
and a dense layer to classify the specific class number used. ResNet 
used Adaptive moment estimation (Adam) optimizer (Kingma and Ba, 
2014) with a learning rate of 10−4, 100 epochs, and batch size equal 
to 30. This configuration enhances model results, as presented in the 
following sections, and the batch size also depends on the memory of 
the video card. Inception used RMSProp optimizer (Tieleman et al., 
2012) with a learning rate of 10−3, 100 epochs, and batch size equal 
to 80. This configuration also results in the best empirical results and 
the batch size is also defined by the video card limits.

With BirdVox, we replaced the input layer with our input con-
figuration (256 × 256), removed the top 4 dense layers (64, 1, 5, 
and 15 units), and added another dense layer with 64 units and the 
same configurations of the original (Cramer et al., 2020) (He Normal 
initializer (He et al., 2015), L2 regularizer with factor 10−3, and not 
using bias) and a dense layer to classify the specific class number used. 
Adam was employed to train the model with a learning rate of 10−4, 
100 epochs, and a batch size equal to 80.

Models were implemented with Python (v3.5.2) associated with 
Keras (v2.2.5) and TensorFlow (v1.10) libraries. To load BirdVox 
weights, we used the model available on birdvoxclassify (v0.2.0).

2.6.1. Combining time-frequency representations with handcrafted features
Inspired by an example of context-adaptive neural network in 

Lostanlen et al. (2019) and a combination of time-frequency repre-
sentation with recording metadata (Jeantet and Dufourq, 2023), an 
auxiliary branch processes handcrafted features, as depicted in Fig.  2a. 
We analyzed three configurations of this branch: one dense layer with 
128 units and ReLU activation, one batch normalization layer, or a 
combination of batch normalization followed by a dense layer.

We did not normalize handcrafted features before training net-
works. In the networks’ main branch, after the flattening layer (CNN2D 
and BirdVox) or global average pooling layer (ResNet-50 and Inception-
V3), we removed the original classification layers and placed a dense 
one with 128 units and ReLU activation. Additionally, to add the same 
layer to BirdVox, we used the model configurations (initializer, regular-
izer, and bias) as presented in the previous subsection. The result of the 
two branches’ concatenation passes through one dense layer with 128 
units and ReLU activation, and lastly, the dense classification layer.

2.6.2. Combining different time-frequency representations
Beyond individual training with spec, mel, and pcen, we conducted 

experiments with combinations of these representations, as presented in 
Fig.  2. We hypothesized that a combination of different representations 
could improve the learning process, similar to Xie et al. (2022). For 
instance, spec turns more visible higher sound harmonics, mel presents 
lower patterns (up to 8 kHz), and pcen shows a filtered version of 
the signal. In one experiment (see Fig.  2b), the representations were 
combined in a 3-channel input and passed to models. Thus, we changed 
the CNN2D input shape to deal with 3-channel. In BirdVox, after the 
5 
Fig. 2. Sketch of the architectures with a combination of features. (𝑎) Time-frequency 
representations with handcrafted features, (𝑏) different time-frequency representations 
in 3-channel, and (𝑐) different time-frequency representations in 3-input. Blue borders 
on (𝑏) only facilitate the visualization in this figure, and network inputs do not consider 
them.

input, we had to add a lambda layer6 that returns the channels’ mean to 
pass a 1D input to the model. BirdVox also used, after the flatten layer, 
a dense layer with 128 units and original BirdVox configurations (ini-
tializer, regularizer, and bias) before the classification layer. ResNet-50 
and Inception-V3 were originally trained with 3-channel input, thus we 
just changed their top layers as described in Section 2.6.1.

In another experiment (see Fig.  2c), we took inspiration from the 
concept of Siamese networks (Bromley et al., 1994; Chopra et al., 
2005) and built architectures with three equal branches (3-input) that 
share weights and receive different views (spec, mel, or pcen) of the 
same data, but did not use contrastive loss function. As branches, we 
considered CNN2D and BirdVox until the first dense layer after their 
flatten (128 units), and ResNet-50 and Inception-V3 until their global 
average pooling layer. The concatenation of the three branches of each 
model also passes through two dense layers (one with 128 units and 
the other with #class units) to classify the data. In the 3-input tests, 
we changed the batch size of the training due to the limits of the video 
card: CNN2D and Inception-V3 equal to 30, BirdVox equal to 70, and 
ResNet-50 equal to 15.

In Fig.  2b, a network learns a feature space from the early combi-
nation of the three input channels, meanwhile, in Fig.  2c, a network 
learns three feature spaces that represent different pattern views, and 
later combines them to perform the classification.

2.6.3. Different time-frequency representations and handcrafted features
Furthermore, we combined the two sections above. In the experi-

ment with 3-channel input (Fig.  2b), we configured inputs as described 

6 It adds an arbitrary function or expression as a network layer.
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in Section 2.6.2 and followed Section 2.6.1 to add the auxiliary branch 
(Fig.  2a). In the 3-input experiment (Fig.  2c), the configuration is 
similar to Section 2.6.2, but we configured main branches to output 128 
units and combined them with the auxiliary branch as in Section 2.6.1.

2.6.4. Quantification
Finally, we also tested the custom loss function (see Fig.  1 right-top 

block) that combines cross-entropy and quantification, a task related to 
estimating class distribution in a dataset (Bella et al., 2010; Maletzke 
et al., 2017). The loss function was defined by Dias et al. (2021b) as 

𝓁𝐶𝑄(𝑋) = 𝜆1𝐶𝐶𝐸(𝑋) + 𝜆2𝐶𝐶𝑒𝑟𝑟(𝑓 (𝑋)), (1)

where 𝑋 is a subset (batch) of instances, 𝐶𝐶𝐸 is the categorical cross-
entropy, 𝐶𝐶𝑒𝑟𝑟 is the absolute error (absolute value of the difference 
between the estimated and real class distributions) of the classify and 
count quantification method (Beijbom et al., 2015; Gao and Sebastiani, 
2016). 𝑓 (.) is the output of a classifier that provides the predicted class 
distribution, and 𝜆𝑖 are the respective weights. The goal is to regularize 
the loss function to guide the training process and compare the current 
results with quantification and evaluate the impact of the modifications 
in the dataset and training process with our prior results. To compare 
with our previous paper (Dias et al., 2021b), we added the loss to all 
models without the changes of Section 2.6 and to the changed ResNets 
that reached the best results. In all cases, we used as input solely the 
mel-spectrogram. The weights of Eq.  (1) were initialized following the 
original paper: 𝜆1 = 𝜆2 = 1.0 (C1Q1), 𝜆1 = 1.0 and 𝜆2 = 0.5 (C2Q1), and 
𝜆1 = 0.5 and 𝜆2 = 1.0 (C1Q2).

2.7. Evaluation

We evaluated the results with balanced accuracy score,7 learning 
curves (the loss function and categorical accuracy Sokolova and La-
palme, 2009), and the recall (sensitivity) measure,8 all available in 
scikit-learn. We trained models to classify 15 classes (see Section 2.1), 
but we assessed the balanced accuracy of the 12 classes related to 
the specific animal species of interest (see Table  1), to facilitate the 
comparison with our previous works. We also employed a two-tailed 
Student’s t -test to compare results using paired tests with a significance 
level equal to 0.05.

To generate reproducible results when training SVM and neural 
networks, we used Python seed values (1030), following the Keras 
FAQ.9 As aforementioned, we used cross-validation with 𝑘 = 5, the 
model trained in each iteration is applied to the test subset, and we 
computed balanced accuracy mean and standard deviation to perform 
evaluations. The general use of the cross-validation technique does not 
consider intermediary models for the final evaluation. However, in our 
analysis, we averaged the metrics of each intermediate model applied 
to the test subset to determine how the models’ behavior changes with 
slight variations of the training dataset. 

Finally, the baseline was processed by an Intel Core i7-6850K CPU, 
3.60 GHz, 6 cores, and 124 GB RAM. Neural network training and 
testing were performed with an NVidia Titan XP video card, with driver 
v387.26, Cuda v9.0, and cuDNN v7.0.5.15.

7 scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_
accuracy_score.html.

8 scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.
html.

9 keras.io/getting_started/faq/.
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3. Results

This section reports the experimental results of our tests with dif-
ferent combinations (fusion) of CNN inputs, considering the datasets 
presented in Section 2.1. The first sections are related to the main 
dataset and the last section to the additional dataset. Such results 
were compared with SVM trained with handcrafted features and evalu-
ated with balanced accuracy ∈ [0, 1]. We trained our models to classify 
15 classes (species of interest + AudioSet) of sounds and used 12 of 
them (species of interest) to evaluate the results and compare them 
with our previous works. AudioSet did not change baseline accuracy 
but improved its recall average by 1.25 percentage points. Adding the 
place and period features increased our baseline accuracy in ≈48%
(from 0.29 to 0.43). We tested two types of inputs for neural networks: 
images (spec, mel, and pcen) and handcrafted features. Following Fig. 
2, we combined images with handcrafted features using three differ-
ent auxiliary branches: dense layer (dense128), batch normalization 
layer (bnorm), and batch normalization with dense layer (bn+d128). 
We combined the images, creating a 3-dimensional tensor (3-channel) 
and a shared weighted architecture with three branches that receive 
different time-frequency representations (3-input). We also concate-
nated 3-channel and 3-input with the branches of handcrafted features 
aforesaid. Finally, we tested a weighted loss function with three weight 
cases, named C1Q1, C2Q1, and C1Q2 (see Section 2.6.4), to compare 
with current results and our prior ones. All models were trained with 5-
fold cross-validation and intermediate models’ results on the test subset 
are reported.

3.1. Combining time-frequency representations and handcrafted features

Table  2 presents results that combine images with handcrafted 
features. In the first value column, most mel results are greater than 
the results of other representations, although Student’s t -tests did not 
reject the null hypothesis (p-value ≥ 0.05) when comparing mel/spec 
and mel/pcen for CNN2D and ResNet50, respectively. InceptionV3 
presented great differences in any result comparison, e.g., mel yielded 
a result 15 percentage points greater than spec. Nevertheless, BirdVox 
obtained higher results with pcen than with spec (up to 7 percentage 
points) or than mel (up to 4 percentage points).

The addition of handcrafted features processed by dense128 always 
generated means less than 0.36, while results without combinations are 
greater than 0.47. The random scenario has a balanced accuracy of 
0.08, and some results were random, indicating the difficulty in con-
vergence under such conditions. This also repeats in other experiments 
as described later.

In the sequel, columns bnorm and bn+d128 have values greater than 
or equal to the column without such combinations, e.g., for BirdVox 
results, pcen with bn+d128 yielded 0.62 against 0.56 with a smaller 
deviation. This appears to solve the issue of convergence. ResNet50 
with spec and InceptionV3 with mel (both combined with bn+d128) 
are the only exceptions that decreased results, generating 0.60 against 
0.66 in the ResNet50 case. These columns (bnorm and bn+d128) present 
similar results with range [0.51, 0.77] and with no significant differences 
between their values, e.g., when comparing mel results of InceptionV3.

Combinations with mel also presented results greater than or equal 
to other spectral representations, except for BirdVox whose pcen re-
sults are greater than 0.60. Even with feature combinations, CNN2D 
and BirdVox obtained results up to 0.62, meanwhile, ResNet50 and 
InceptionV3 generated results up to 0.77. However, the combinations 
influenced more CNN2D and BirdVox (results up to 7 percentage points 
higher) than the deeper models. Moreover, except in column dense128, 
all results are greater than the SVM baseline. In Fig.  3, it is possible to 
visually verify these differences between the best results of each model 
and the gap between CNN2D/BirdVox and ResNet50/InceptionV3.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://keras.io/getting_started/faq/
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Fig. 3. Individual value plots of balanced accuracy of neural networks applied to test subset. Each plot area (white and shaded gray) shows the best results of a specific model 
(from left to right: CNN2D, BirdVox, ResNet50, and InceptionV3). There is an overlap between points that generates model results with a different number of points. Solid and 
dotted lines in each group communicate median and mean values, respectively. The long dotted red line on the bottom is the SVM balanced accuracy mean.
Table 2
Mean and standard deviation of balanced accuracy of the models applied 
to the test subset. The first result column presents results for models with 
images as input and the remaining columns combine these representations 
with handcrafted features processed by different branch layers. Bold values 
highlight the best results of each model (greatest mean and lowest standard 
deviation).

dense128 bnorm bn+d128

CNN2D
spec 0.49±0.02 0.08±0.00 0.56±0.01 0.56±0.02
mel 0.51±0.02 0.08±0.00 0.56±0.02 0.57±0.02
pcen 0.48±0.02 0.08±0.00 0.54±0.02 0.55±0.01

BirdVox
spec 0.49±0.02 0.32±0.11 0.51±0.01 0.51±0.02
mel 0.52±0.04 0.34±0.15 0.52±0.02 0.54±0.02
pcen 0.56±0.02 0.35±0.13 0.61±0.03 0.62±0.01

ResNet50
spec 0.66±0.04 0.24±0.16 0.68±0.02 0.60±0.13
mel 0.75±0.02 0.25± 0.17 0.77±0.02 0.77±0.02
pcen 0.70±0.08 0.25±0.17 0.75±0.02 0.73±0.02

InceptionV3
spec 0.58±0.04 0.08±0.00 0.63±0.02 0.62±0.03
mel 0.73±0.02 0.20±0.26 0.73±0.03 0.71±0.02
pcen 0.66±0.04 0.09±0.01 0.68±0.03 0.69±0.02

SVM (baseline) 0.43 ± 0.02.

3.2. Combining different time-frequency representations and handcrafted 
features

Table  3 reports results that combine three time-frequency image 
representations and handcrafted features. In the first two columns, the 
results of 3-channel are greater than or equal to the results of 3-input. 
For instance, ResNet50 yielded a result with 3-channel 68 percentage 
points greater than the result with 3-input.

Equally to Table  2, when we used a dense128 to combine other fea-
tures, the results decreased mainly for 3-channel, e.g., from 0.73 to 0.19 
for InceptionV3. In the following, the majority of comparisons between
bnorm (or bn+dense128) and the column without it presented similar 
results (null hypothesis was not rejected with p-value ≥ 0.05). However, 
all CNN2D results, ResNet50 (3-input and bn+d128) and InceptionV3 
(3-input and bnorm or bn+d128) presented significant increments. For 
example, for InceptionV3, while the first 3-input column presents 0.08, 
the combination with bn+dense128 shows 0.34.

Both additions, with bnorm and bn+dense128 yielded similar results, 
except for InceptionV3 and 3-channel, in which bn+dense128 decreased 
results of bnorm by 5 percentage points. In all combinations, 3-channel 
obtained results greater than or equal to 3-input, e.g., ResNet50 with
bnorm, 0.77 against 0.15. CNN2D and BirdVox yielded results up to 
0.58, meanwhile, ResNet50 and InceptionV3 obtained results up to 
0.78.
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Table 3
Mean and standard deviation of balanced accuracy of the models 
applied to the test subset. First two result columns present model 
results with combinations of image inputs and the remaining columns 
combine these representations with handcrafted features processed by 
different branch layers. Bold values highlight the best results of each 
model (greatest mean and lowest standard deviation). 

dense128

3-input 3-channel 3-input 3-channel

CNN2D 0.49±0.01 0.49±0.02 0.08±0.00 0.08±0.01
BirdVox 0.31±0.21 0.57±0.02 0.21±0.18 0.43±0.13
ResNet50 0.10± 0.04 0.78±0.02 0.09±0.01 0.25±0.18
InceptionV3 0.08±0.00 0.73±0.03 0.10±0.04 0.19±0.24

bnorm bn+d128

3-input 3-channel 3-input 3-channel

CNN2D 0.53±0.02 0.54±0.01 0.53±0.03 0.54±0.02
BirdVox 0.21±0.19 0.58±0.01 0.35±0.20 0.57±0.02
ResNet50 0.15±0.09 0.77±0.02 0.24±0.03 0.76±0.01
InceptionV3 0.31±0.02 0.73±0.02 0.34±0.03 0.68±0.04

SVM (baseline) 0.43 ± 0.02.

All 3-channel columns, except the ones with dense128 and Incep-
tionV3 with bn+d128, presented results greater than or equal to Table 
2 first result column. An example is BirdVox with 3-channel and bnorm
and BirdVox with pcen input obtained, respectively, 0.58 and 0.56 
balanced accuracy mean. In all 3-channel cases, except with dense128, 
results are greater than the SVM baseline.

A comparison between combinations in Tables  2 and 3 highlights 
that CNN2D and BirdVox presented higher results with handcrafted 
features addition than using 3-channel, e.g, BirdVox with pcen and
bn+d128 obtained 0.62, with 3-channel input yielded 0.57, and with 
3-channel and bnorm generated an intermediate result of 0.58 (see Fig. 
3). However, comparisons of ResNet50 results or InceptionV3 results 
did not reject the null hypothesis of the statistical test (p-value ≥
0.05), presenting similarity between results. For instance, ResNet50 
with mel (or 3-channel) and bnorm generated 0.77, with 3-channel 
input obtained 0.78.

3.3. Quantification

Table  4 describes results with the quantification loss function. We 
considered only mel as input because this representation presented the 
best results in Table  2 (column without combinations) and to compare 
with our previous works. There are no significant differences (null 
hypothesis was not rejected with p-value ≥ 0.05) between balanced 
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Table 4
Mean and standard deviation of balanced accuracy of the models 
applied to the test subset. Results were generated with mel-
spectrogram as input. Bold values highlight the best results of 
each model (greatest mean and lowest standard deviation). Columns 
communicate the weights of the loss function: 𝜆1 = 𝜆2 = 1.0 (C1Q1), 
𝜆1 = 1.0 and 𝜆2 = 0.5 (C2Q1), and 𝜆1 = 0.5 and 𝜆2 = 1.0 (C1Q2). 

mel C1Q1 C2Q1 C1Q2

CNN2D 0.51±0.02 0.51±0.02 0.51±0.01 0.50±0.01
BirdVox 0.52±0.04 0.53±0.02 0.53±0.02 0.53±0.02
ResNet50 0.75±0.02 0.76±0.01 0.75±0.04 0.76±0.01
InceptionV3 0.73±0.02 0.72±0.03 0.71±0.03 0.71±0.03

SVM (baseline) 0.43 ± 0.02.

Table 5
ResNet50 best results with test subset. First columns describe the 
principal configurations of the models and the first two rows 
communicate our earlier research. Rows 6 and 8 were calculated to 
show the impact of the quantification on the current best results. 
Highlighted row presents the highest balanced accuracy and the 
other bold values emphasize results that overlap, considering the 
confidence interval. 
Input Optimizer Quantif. B.Acc.

mel Dias et al. (2021b) SGD – 0.52±0.03
mel Dias et al. (2021b) SGD C2Q1 0.52±0.01

mel Adam – 0.75±0.02
mel Adam C1Q1 0.76±0.01
mel+bnorm feats Adam – 0.77± 0.02
mel+bnorm feats Adam C2Q1 0.77±0.02
3-channel Adam – 0.78±0.02
3-channel Adam C1Q1 0.77±0.02

SVM (baseline) 0.43 ± 0.02.

accuracy or between recall of models with and without quantifica-
tion. Furthermore, in Fig.  3, we can verify a comparison of balanced 
accuracy between models with quantification and the combinations 
previously described. To perform one more test beyond the basic eval-
uation, we calculated the silhouette coefficient of the training subset 
(4500 samples) using the features extracted by the penultimate layer 
of each model. In all cases, quantification increased silhouette values 
by 0.02 points (for example, ResNet50 from 0.34 to 0.36), except for 
InceptionV3, where the silhouette decreased from 0.40 to 0.36. Even 
then, the quantification did not have power to change the learned 
space.

3.4. The best results comparison

Table  5 presents a comparison of the best results of Tables  2–4, 
and Dias et al. (2021b). ResNet50 with mel, combination processed 
with bnorm, and 3-channel input attained proper balanced accuracy, 
as aforementioned. To compare with quantification results, we used 
the custom loss function to train the best models that combine inputs 
and present their results. In this comparison, there are high differences 
between the results in Dias et al. (2021b) and the current results, 
mainly because we changed the optimizer algorithm and related con-
figurations based on the description of Section 2.6. Moreover, the 
null hypothesis of the Student’s t -test was not rejected (p-value ≥
0.05) when comparing results with and without quantification, showing 
significant similarity between them.

3.5. Evaluation of learning curves

Fig.  4 presents learning curves of the best results for each network 
model aforesaid. In general, training reached valleys where loss and 
accuracy remain monotonic. CNN2D started decreasing loss (training 
and validation) and increasing accuracy (training and validation), and 
around the 20th epoch, the model overfitted, increasing the difference 
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Table 6
Mean and standard deviation of balanced accuracy of 
the models trained and applied to additional data. 
Highlighted rows present the higher balanced accuracy 
of each model.
Model Input B.Acc.

BirdVox

pcen 0.83±0.02
pcen+bn+dense128 0.85±0.03
3-input 0.88±0.02
3-input+bn+dense128 0.89±0.03
3-channel 0.87±0.07
3-channel+bn+dense128 0.91±0.01

ResNet50

mel 0.90±0.02
mel+bn+dense128 0.89±0.02
3-input 0.49±0.15
3-input+bnorm 0.62±0.10
3-channel 0.89±0.02
3-channel+bnorm 0.86±0.04

SVM (baseline) 0.76 ± 0.04.

between training and validation curves. ResNet50 presented the lowest 
differences between training and validation curves: ≈1.10 (loss) and 
≈0.19 (accuracy), and InceptionV3 presents the highest variation of 
validation curves.

3.6. Additional results

Considering an additional dataset, we followed the same procedure 
presented in Section 2. However, we did not add AudioSet or apply 
quantification because they did not influence the accuracy. Besides, 
we did not consider information about the place and period because 
they were unavailable in the dataset, using a handcrafted feature vector 
with 30 dimensions. Additionally, for tests such as presented in Table 
2, we only report mel (CNN2D, ResNet50, and InceptionV3) and pcen 
(BirdVox) because they returned the best results.

Table  6 reports the models and combinations with the best results, 
which presented values above the SVM baseline. Models with different 
depths, BirdVox with three convolutional layers and ResNet50 with 
more than 50 convolutional layers presented similar results. Indepen-
dent of the time-frequency representation (pcen, 3-input, or 3-channel), 
all BirdVox tests with handcrafted features did not present significant 
differences (null hypothesis was not rejected with p-value ≥ 0.05) to 
the tests without these additions, e.g., 3-input and its counterpart with
bn+d128, balanced accuracy respectively 0.88 and 0.89. Moreover, 3-
input and 3-channel tests did not present differences between them but 
outperformed pcen results in most cases. Results of pcen are in the 
interval [0.78, 0.85], 3-input results in [0.86, 0.89], and 3-channel results 
in [0.86, 0.91].

In ResNet50 tests, most time-frequency representations combined 
with handcrafted features did not present significant differences from 
their versions without combinations. One exception is 3-input with
dense128 (not in Table  6) with balanced accuracy 0.63 ± 0.11. Tests 
with 3-input dropped the results, for example, in 3-input versus mel, 
respectively, 0.49 and 0.90. Meanwhile, 3-channel maintained equiva-
lent results to mel tests (null hypothesis was not rejected with p-value ≥
0.05). Results of mel are in the interval [0.63, 0.90], 3-input results in 
[0.34, 0.62], and 3-channel results in [0.63, 0.89].

In addition to the results in Table  6, CNN2D presented results close 
to the random scenario with a balanced accuracy of 0.05 in all time-
frequency inputs and their combinations using dense128, but the other 
combinations reached results up to 0.57. Lastly, InceptionV3 achieved 
results in a random scenario only for 3-input without combinations, and 
in the other tests, it generated balanced accuracy up to 0.40.
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Fig. 4. Learning curves of the best models for each architecture. Central curves are the mean of the cross-validation steps and the shaded area around them is the deviation. Dif. 
values are the difference between the training and validation in the last epoch. Accuracy curves are related to categorical accuracy.
4. Discussion

Over this discussion, the main tests are related to the first sections 
of Section 3 and the additional tests are related to Section 3.6. In 
general, with the configurations used, mel-spectrogram yielded the best 
results, both with and without combining (fusing) other features. For 
example, for ResNet50 without combinations in the main datasets, 
mel generated results up to 14% greater than other representations, 
and for InceptionV3 using batch normalization to process handcrafted 
features, mel obtained results up to 16% greater than the other image 
inputs. We suggest the expansion performed by mel-spectrogram in 
low-frequencies highlighted important patterns that are not properly 
recognizable in the regular spectrogram and PCEN attenuated impor-
tant information to discriminate our specific sound patterns. However, 
mel-scale representations were designed for sounds perceivable by 
human hearing (Logan, 2000) and may not accurately represent some 
animals’ vocalization. Generally speaking, the choice of representation 
depends on the characteristics of the event of interest or the appli-
cation, e.g., source separation and sound synthesis also depend on 
the signal phase, which is discarded by this representation (Purwins 
et al., 2019). When checking the additional results, BirdVox with PCEN 
achieved results close to ResNet50 with mel-spectrogram, a behavior 
that reinforces the need to evaluate the best representation for each 
scenario (Stowell, 2022) and that input compression and normalization, 
9 
as in PCEN approach, can aid models in noisy environments (Ghaffari 
and Devos, 2024).

The branch that processes handcrafted features solely with dense 
layers attained poor results (less than 0.36 in the main tests) because we 
did not pre-process the input features with normalization. In the SVM 
baseline, normalization did not improve results, hence we also used 
features in neural networks without pre-processing steps to guarantee 
a fair comparison, and because part of the tests has normalization lay-
ers. Notwithstanding, the other combinations generated results greater 
than or equal to architecture without combinations, e.g., in the main 
tests, BirdVox with PCEN and combined with batch normalization 
auxiliary branch obtained results 5 percentage points greater than the 
architecture with the same input but without combinations. Moreover, 
the branch with batch normalization generated results with significant 
similarity (null hypothesis was not rejected with p-value ≥ 0.05) to 
the branch with batch normalization and dense layer, nonetheless, 
with fewer trainable parameters added to the main branch. It is also 
important to pay attention to the context because, in the additional 
tests, BirdVox with PCEN and a dense layer obtained results comparable 
to other combinations and any version without handcrafted features. 
These results highlight the possibility of normalizing the inputs based 
on the input needs, a common practice with neural networks. In 
addition, as in our tests, it is possible to use batch normalization or 
layer normalization inside the model structure to normalize features or 
samples over the mini-batches.
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Unlike the other models, BirdVox presented better results with 
PCEN and combinations, instead of mel-spectrogram input. Further-
more, in the additional tests, the same association of model and input 
reached results similar to a deep model like ResNet50. The model 
was pre-trained with PCEN and we can also tune these representation 
parameters manually or learn them with a specific network archi-
tecture (Wang et al., 2017a) to achieve higher results. In addition, 
applying noise-reduction such as PCEN can improve the results of 
neural networks detecting animal sounds (Ghaffari and Devos, 2024; 
Allen et al., 2021).

In the sequel, 3-channel input obtained results greater than or equal 
to 3-input regardless of combining or not with handcrafted features. 
For instance, for ResNet50 in the main tests, 3-channel obtained results 
almost 8× (without other combinations) and 5× (combined with batch 
normalization) greater than 3-input. We hypothesize that the gradient 
was not sufficient to update the shared weights and the origin of 
ResNet50 and InceptionV3, trained with 3-dimensional inputs, also 
contributed to 3-channel higher results. Again, the combination of 
handcrafted features processed by a dense layer decreased network 
results (less than 0.45 in the main tests). All in all, in the main 
tests, combinations with handcrafted features did not change results 
significantly (null hypothesis was not rejected with p-value ≥ 0.05). 
However, these combinations yielded proper results in CNN2D, in all 
combinations of InceptionV3 and 3-input, and in ResNet50 with 3-
input combined with batch normalization and a dense layer. In the 
additional tests, 3-channel and 3-input presented similar results in 
BirdVox and followed the same previous patterns for ResNet50, with 
3-input showing lower results.

Also in the main tests, the input combinations impacted more on 
CNN2D and BirdVox than on ResNet50 and InceptionV3 (see Fig.  3) 
but in the additional tests it did not impact BirdVox results because the 
results are higher even without the combinations. Similar to our main 
tests, Jeantet and Dufourq (2023) also incorporated extra features into 
small architectures and achieved result improvements. We suggest the 
auxiliary branch of the network, with few layers and limited output 
size, compared with the main branch, could not influence the results 
of deep architectures, such as ResNet50 (more than 50 convolutional 
layers) and InceptionV3 (more than 90 convolutional layers).

The use of quantification to regularize the loss function, follow-
ing (Dias et al., 2021b), provided no relevant changes of balanced 
accuracy (±1 percentage point) or class recall. Silhouette coefficients 
were also similar with/without quantification, showing increments of 
0.02 point, except for InceptionV3, which yielded smaller silhouette 
values (−0.04 point), which is related to the decrease in the model 
accuracy. These results are similar to the prior work that showed 
that the quantification loss function did not influence accuracy but 
generated a subtle increase in silhouette values.

A general comparison with our previous paper (Dias et al., 2021b) 
reinforced the importance of refining the optimization setup based 
on the data and the task. With suitable configurations, the ResNet 
yielded results up to 50% greater than our prior results. Generally 
speaking, Adam adapts its rates during the training process (Kingma 
and Ba, 2014) and is appropriate to fine-tune models, and SGD can 
achieve better results using momentum (Becher and Ponti, 2021). More 
empirical information about choosing and tuning optimizers can be 
found in Becher and Ponti (2021).

With the evaluation of learning curves, one can notice that indepen-
dent of architecture depth, width, or training approach (pre-trained or 
not), it was difficult to properly generalize the models (training loss 
around zero and validation loss > 1), attaining balanced accuracy up 
to 0.78. In a scenario with a small number of labeled samples (less 
than 10K) to train a deep learning model, we suggest, for instance, 
inspecting variations of architecture parameters, regularization, early 
stopping,  and training techniques to improve convergence and model 
generalization.
10 
5. Conclusion

This paper addressed a series of tests with combinations (fusions) of 
inputs to improve neural network representation of natural sound pat-
terns. We have tested four architectures, one trained from scratch and 
the others pre-trained with images from natural sounds and a general 
image dataset. We also performed tests in two different datasets, one 
with bird and anuran sounds and the second one with only birds but 
with more species. The empirical evidence suggests mel-spectrogram is 
a proper representation of our datasets, except for BirdVox in which 
PCEN is the best choice. A combination of image inputs with hand-
crafted features can be implemented with the addition of a simple 
branch that contains a batch normalization layer. These combinations 
are suitable for small architectures, for example, with two or three 
convolutional layers, as BirdVox, but generated subtle improvements 
in ResNet50 and InceptionV3, even with a 3-dimensional representa-
tion of spectrogram variations. Lastly, the quantification loss function 
presented similar results to our earlier work, but future tests can be 
considered to improve quantification predictions along with searching 
for suitable weight values.

Overall, using a larger model transfers better, which may indicate 
there is no need to design specific architectures, but leveraging pre-
trained models of different depths as best as possible corroborates 
with (Dufourq et al., 2022). Indeed, combination techniques are much 
more effective on small networks when we compare the results of 
networks with and without input combinations.

Handcrafted features and combined inputs improved or maintained 
the performance, which may be good practice for general applications 
of Soundscape Ecology. Also, generalization issues are still present, 
which may generate poor classification with errors greater than 20%, 
and it is still a matter for future investigation. Thus, future work 
is demanded to assess other inputs and their parameters, test other 
architectures such as transformers, evaluate regularization approaches 
to improve model generalization, improve of the combination (fusion) 
of the features as in Dai et al. (2021), Jatavallabhula et al. (2023), and 
investigate the applicability of other approaches, such as (Kong et al., 
2020; Cramer et al., 2019; Guzhov et al., 2022). Besides, it is important 
to conduct a deeper evaluation of optimizers and their parameters in 
sound identification.
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