Filtros : "Indexado no Zentralblatt MATH" "TEORIA ERGÓDICA" Removido: "Inglaterra" Limpar

Filtros



Refine with date range


  • Source: Bulletin of the London Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e ZHANG, Jinhua. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, v. 55, n. 3, p. 1404-1418, 2023Tradução . . Disponível em: https://doi.org/10.1112/blms.12800. Acesso em: 31 out. 2024.
    • APA

      Tahzibi, A., & Zhang, J. (2023). Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, 55( 3), 1404-1418. doi:10.1112/blms.12800
    • NLM

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12800
    • Vancouver

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12800
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, NÚMEROS COMPLEXOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVEZ, Gabriela e SMANIA, Daniel e YAMPOLSKY, Michael. Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, v. 53, n. 3, p. Se 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00574-022-00295-8. Acesso em: 31 out. 2024.
    • APA

      Estevez, G., Smania, D., & Yampolsky, M. (2022). Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, 53( 3), Se 2022. doi:10.1007/s00574-022-00295-8
    • NLM

      Estevez G, Smania D, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
    • Vancouver

      Estevez G, Smania D, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 31 out. 2024.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Annales Scientifiques de l'École Normale Supérieure. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS, DINÂMICA DE FOLHEAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Jérôme e FISHER, Todd e TAHZIBI, Ali. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, v. 55, n. 4, p. 969-1002, 2022Tradução . . Disponível em: https://doi.org/10.24033/asens.2511. Acesso em: 31 out. 2024.
    • APA

      Buzzi, J., Fisher, T., & Tahzibi, A. (2022). A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, 55( 4), 969-1002. doi:10.24033/asens.2511
    • NLM

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 out. 31 ] Available from: https://doi.org/10.24033/asens.2511
    • Vancouver

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 out. 31 ] Available from: https://doi.org/10.24033/asens.2511
  • Source: Annals of Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Solenoidal attractors with bounded combinatorics are shy. Annals of Mathematics, v. 191, n. Ja 2020, p. 1-79, 2020Tradução . . Disponível em: https://doi.org/10.4007/annals.2020.191.1.1. Acesso em: 31 out. 2024.
    • APA

      Smania, D. (2020). Solenoidal attractors with bounded combinatorics are shy. Annals of Mathematics, 191( Ja 2020), 1-79. doi:10.4007/annals.2020.191.1.1
    • NLM

      Smania D. Solenoidal attractors with bounded combinatorics are shy [Internet]. Annals of Mathematics. 2020 ; 191( Ja 2020): 1-79.[citado 2024 out. 31 ] Available from: https://doi.org/10.4007/annals.2020.191.1.1
    • Vancouver

      Smania D. Solenoidal attractors with bounded combinatorics are shy [Internet]. Annals of Mathematics. 2020 ; 191( Ja 2020): 1-79.[citado 2024 out. 31 ] Available from: https://doi.org/10.4007/annals.2020.191.1.1
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Amanda de e SMANIA, Daniel. Central limit theorem for generalized Weierstrass functions. Stochastics and Dynamics, v. 19, n. 1, p. 1950002-1-1950002-18, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0219493719500023. Acesso em: 31 out. 2024.
    • APA

      Lima, A. de, & Smania, D. (2019). Central limit theorem for generalized Weierstrass functions. Stochastics and Dynamics, 19( 1), 1950002-1-1950002-18. doi:10.1142/S0219493719500023
    • NLM

      Lima A de, Smania D. Central limit theorem for generalized Weierstrass functions [Internet]. Stochastics and Dynamics. 2019 ; 19( 1): 1950002-1-1950002-18.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0219493719500023
    • Vancouver

      Lima A de, Smania D. Central limit theorem for generalized Weierstrass functions [Internet]. Stochastics and Dynamics. 2019 ; 19( 1): 1950002-1-1950002-18.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0219493719500023
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e YANG, Jiagang. Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, v. 371, n. 2, p. 1231-1251, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7278. Acesso em: 31 out. 2024.
    • APA

      Tahzibi, A., & Yang, J. (2019). Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, 371( 2), 1231-1251. doi:10.1090/tran/7278
    • NLM

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/tran/7278
    • Vancouver

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/tran/7278
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2453-2463, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14422. Acesso em: 31 out. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2019). A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, 147( 6), 2453-2463. doi:10.1090/proc/14422
    • NLM

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/14422
    • Vancouver

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/14422
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, INVARIANTES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Shy shadows of infinite-dimensional partially hyperbolic invariant sets. Ergodic Theory and Dynamical Systems, v. 39, n. 5, p. 1361-1400, 2019Tradução . . Disponível em: https://doi.org/10.1017/etds.2017.65. Acesso em: 31 out. 2024.
    • APA

      Smania, D. (2019). Shy shadows of infinite-dimensional partially hyperbolic invariant sets. Ergodic Theory and Dynamical Systems, 39( 5), 1361-1400. doi:10.1017/etds.2017.65
    • NLM

      Smania D. Shy shadows of infinite-dimensional partially hyperbolic invariant sets [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 5): 1361-1400.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/etds.2017.65
    • Vancouver

      Smania D. Shy shadows of infinite-dimensional partially hyperbolic invariant sets [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 5): 1361-1400.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/etds.2017.65
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, v. 329, p. 329-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.02.019. Acesso em: 31 out. 2024.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2018). On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, 329, 329-360. doi:10.1016/j.aim.2018.02.019
    • NLM

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
    • Vancouver

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TOPOLOGIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José e MEZA-SARMIENTO, Ingrid S e OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 183-213, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.051. Acesso em: 31 out. 2024.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.[citado 2024 out. 31 ] Available from: https://doi.org/10.12775/TMNA.2017.051
  • Source: Journal of the Institute of Mathematics of Jussieu. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Amanda de e SMANIA, Daniel. Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps. Journal of the Institute of Mathematics of Jussieu, v. 17, n. 3, p. 673-733, 2018Tradução . . Disponível em: https://doi.org/10.1017/S1474748016000177. Acesso em: 31 out. 2024.
    • APA

      Lima, A. de, & Smania, D. (2018). Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps. Journal of the Institute of Mathematics of Jussieu, 17( 3), 673-733. doi:10.1017/S1474748016000177
    • NLM

      Lima A de, Smania D. Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps [Internet]. Journal of the Institute of Mathematics of Jussieu. 2018 ; 17( 3): 673-733.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S1474748016000177
    • Vancouver

      Lima A de, Smania D. Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps [Internet]. Journal of the Institute of Mathematics of Jussieu. 2018 ; 17( 3): 673-733.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S1474748016000177
  • Source: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson et al. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, v. No 2017, n. 9, p. 3259-3272, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2017136. Acesso em: 31 out. 2024.
    • APA

      Itikawa, J., Llibre, J., Mereu, A. C., & Oliveira, R. D. dos S. (2017). Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, No 2017( 9), 3259-3272. doi:10.3934/dcdsb.2017136
    • NLM

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 out. 31 ] Available from: https://doi.org/10.3934/dcdsb.2017136
    • Vancouver

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 out. 31 ] Available from: https://doi.org/10.3934/dcdsb.2017136
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TOPOLOGIA DIFERENCIAL, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOT, Thierry e MAQUERA APAZA, Carlos Alberto. Nil-Anosov actions. Mathematische Zeitschrift, v. 287, n. 3/4, p. 1279-1305, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00209-017-1868-1. Acesso em: 31 out. 2024.
    • APA

      Barbot, T., & Maquera Apaza, C. A. (2017). Nil-Anosov actions. Mathematische Zeitschrift, 287( 3/4), 1279-1305. doi:10.1007/s00209-017-1868-1
    • NLM

      Barbot T, Maquera Apaza CA. Nil-Anosov actions [Internet]. Mathematische Zeitschrift. 2017 ; 287( 3/4): 1279-1305.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00209-017-1868-1
    • Vancouver

      Barbot T, Maquera Apaza CA. Nil-Anosov actions [Internet]. Mathematische Zeitschrift. 2017 ; 287( 3/4): 1279-1305.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00209-017-1868-1
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, v. 235, p. 37-48, 2016Tradução . . Disponível em: https://doi.org/10.4064/fm92-10-2015. Acesso em: 31 out. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2016). On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, 235, 37-48. doi:10.4064/fm92-10-2015
    • NLM

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/fm92-10-2015
    • Vancouver

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 out. 31 ] Available from: https://doi.org/10.4064/fm92-10-2015
  • Source: Theoretical Computer Science. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DINÂMICA UNIDIMENSIONAL, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BASTOS, J et al. A class of cubic Rauzy fractals. Theoretical Computer Science, v. 588, p. 114-130, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.tcs.2015.04.007. Acesso em: 31 out. 2024.
    • APA

      Bastos, J., Messaoudi, A., Rodrigues, T., & Smania, D. (2015). A class of cubic Rauzy fractals. Theoretical Computer Science, 588, 114-130. doi:10.1016/j.tcs.2015.04.007
    • NLM

      Bastos J, Messaoudi A, Rodrigues T, Smania D. A class of cubic Rauzy fractals [Internet]. Theoretical Computer Science. 2015 ; 588 114-130.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.tcs.2015.04.007
    • Vancouver

      Bastos J, Messaoudi A, Rodrigues T, Smania D. A class of cubic Rauzy fractals [Internet]. Theoretical Computer Science. 2015 ; 588 114-130.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.tcs.2015.04.007
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DINÂMICA UNIDIMENSIONAL, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUNHA, Kleyber e SMANIA, Daniel. Rigidity for piecewise smooth homeomorphisms on the circle. Advances in Mathematics, v. 250, n. ja 2014, p. 193-226, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2013.09.017. Acesso em: 31 out. 2024.
    • APA

      Cunha, K., & Smania, D. (2014). Rigidity for piecewise smooth homeomorphisms on the circle. Advances in Mathematics, 250( ja 2014), 193-226. doi:10.1016/j.aim.2013.09.017
    • NLM

      Cunha K, Smania D. Rigidity for piecewise smooth homeomorphisms on the circle [Internet]. Advances in Mathematics. 2014 ; 250( ja 2014): 193-226.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2013.09.017
    • Vancouver

      Cunha K, Smania D. Rigidity for piecewise smooth homeomorphisms on the circle [Internet]. Advances in Mathematics. 2014 ; 250( ja 2014): 193-226.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2013.09.017
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CATALAN, Thiago e TAHZIBI, Ali. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 34, n. 5, p. 1503-1524, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.12. Acesso em: 31 out. 2024.
    • APA

      Catalan, T., & Tahzibi, A. (2014). A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, 34( 5), 1503-1524. doi:10.1017/etds.2013.12
    • NLM

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/etds.2013.12
    • Vancouver

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/etds.2013.12
  • Source: Journal of Modern Dynamics - JMD. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOGOLEV, Andrey e TAHZIBI, Ali. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, v. 8, n. 3/4, p. 549-576, 2014Tradução . . Disponível em: https://doi.org/10.3934/jmd.2014.8.549. Acesso em: 31 out. 2024.
    • APA

      Gogolev, A., & Tahzibi, A. (2014). Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, 8( 3/4), 549-576. doi:10.3934/jmd.2014.8.549
    • NLM

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2024 out. 31 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
    • Vancouver

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2024 out. 31 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, G e TAHZIBI, Ali. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3'. Proceedings of the American Mathematical Society, v. 142, n. 9, p. 3193-3205, 2014Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2014-12063-6. Acesso em: 31 out. 2024.
    • APA

      Ponce, G., & Tahzibi, A. (2014). Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3'. Proceedings of the American Mathematical Society, 142( 9), 3193-3205. doi:10.1090/S0002-9939-2014-12063-6
    • NLM

      Ponce G, Tahzibi A. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3' [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3193-3205.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12063-6
    • Vancouver

      Ponce G, Tahzibi A. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3' [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3193-3205.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12063-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024