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AsstracT. Consider a C? family of good mixing C* piecewise expanding
unimodal maps t € [a,b] — ft, with a critical point ¢, that is transversal to
the topological classes of such maps. Given a Lipchitz observable ¢ consider
the function

Ro(t) =/¢> dyur,

where p; is the unique absolutely continuous invariant probability of f:. Sup-
pose that o¢ > 0 for every ¢ € [a, b], where

?=_01 (¢Oftj B fd)dm))Q dpe.

[oe]

of = o?() = Jim ( —

We show that

m{te[a,b]:t—l-he[a,b] and R¢(t+h)R¢(t)>§y}

1
U(t)/—log |h| ( h
converges to
1 / v d

— e 2 ds,

V2 J oo
where U(t) is a dynamically defined function and m is the Lebesgue measure
on [a,b], normalized in such way that m([a,b]) = 1. As a consequence we

show that R is not a Lipchitz function on any subset of [a,b] with positive
Lebesgue measure.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let f; be a smooth family of (piecewise) smooth maps on a manifold M, and
let us suppose that for each f; there is a physical (or SBR) probability p; on M.
Given an observable ¢ : M — R, we can ask if the function

Ry : [0,1] — R
t o [ du

is differentiable and if we can find an explicit formula for its derivative. The study
of this question is the so called linear response problem.

D. Ruelle showed that R, is differentiable and also gave the formula for R, in
the case of smooth uniformly hyperbolic dynamical systems (see Ruelle in [16] and
[17], and Baladi and Smania in [4] for more details).

In the setting of smooth families of piecewise expanding unimodal maps, Baladi
and Smania (see [2]) proved that if we have a C2 family of piecewise expanding
unimodal maps of class C3, then Ry is differentiable in ¢y, with ¢ € C'TEP,
provided that the family f; is tangent to the topological class of f;, at ¢t = to. It
turns out that the family s — fs is tangent to the topological class of f; at the
parameter ¢ if and only if

M;—1
! u(fE(e)
T(fov) = Y bele)
2 Do)

where vy = Os fs|s=+ and M, is either the period of the critical point ¢ if ¢ is periodic,
or oo, otherwise (see [3]). Now, let us consider a C? family of piecewise expanding
unimodal maps of class C* that is transversal to the topological classes of piecewise
unimodal maps, that is

(1) J(ft,vr) =

for every t.

Baladi and Smania, [2] and [5], proved that R, is not differentiable, for most of
the parameters t, even if ¢ is quite regular. One can ask what is the regularity of
the function R, in this case. We know from Keller [9] (see also Mazzolena [14])
that Ry has modulus of continuity |h|(log(1/|h|) + 1).

We will show the Central Limit Theorem for the modulus of continuity of the
function Ry where ¢ is a lipschitzian observable. Let

n—1 1
. ¢o J d
e LD

dpe # 0.

Let t — f; be a C? family of C* piecewise expanding unimodal maps. Note that
each f; has a unique absolutely continuous invariant probability u; = pym, where
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its density p; has bounded variation. Let

1
2) Li= [1og|Df| du >0, £ = =

Indeed p; is continuous except on the forward orbit f7(c) of the critical point
(see Baladi [1]). Let S; be the jump of p; at the critical value, that is
3 Sy = lim x)— lim r)= lim x) > 0.
(3) t ngt(c)fPt( ) m%ft(c)ert( ) Iﬁft(c)fﬂt( )

A piecewise expanding C" unimodal map f is good if either ¢ is not a periodic point
of f or

liminf |DfP(x)| > 2.
Tr—c
where p > 2 is the prime period of ¢ (see [2] and [3]for more details).

Theorem 1.1. Let
t € la,b] — fi,
be a transversal C? family of good and mizing C* piecewise expanding unimodal
maps
f+:[0,1] — [0,1].
If ¢ is a lipschitzian observable satisfying o # 0 for every t € [a,b], then for every
yeR

(4)
lim m<qt € [a,bl: t+h € [a,b] and ! <R¢(t+h)_R¢(t)> <y}

= (t)y/~Tog 1 h

converges to

]. v _s2d
— e 2ds
\/2%/_00 ’

\IJ(t) = UtStJtzt.

and m is the Lebesque measure normalized in such way that m([a,b]) = 1.

where

Corollary 1.2. Under the same assumptions above, the function R¢ is not a lip-
schitzian function on any subset of [a,b] with positive Lebesgue measure.

The proof of Corollary 1.2 will be given in the last section as a consequence of a
stronger result (Corollary 9.1).
2. FAMILIES OF PIECEWISE EXPANDING UNIMODAL MAPS

We begin this section by setting the one-parameter family of piecewise expanding
unimodal maps.

Definition 2.1. A piecewise expanding C” unimodal map f : [0,1] — [0,1] is a
continuous map with a critical point ¢ € (0,1), f(0) = f(1) = 0 and such that
flio,q and f|c,1) are C" and

1
2]
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We say that f is mixing if f is topologically mixing on the interval [f2(c), f(c)].
For instance, if

inf [Df ()| > V2

then f is not renormalisable. In particular f is topologically mixing on [f2(c), f(c)].

We can see the set of all C” piecewise expanding unimodal maps that share
the same critical point ¢ € (0,1) as a convex subset of the affine subspace {f €
B": f(0) = f(1)} of the Banach space B" of all continuous functions f: [0,1] — R
that are C” on the intervals [0, ¢] and [c, 1], with the norm

[flr = 1floo +|f

Let f; : [0,1] = [0,1], ¢ € [a, b] be a one-parameter family of piecewise expanding
C* unimodal maps. We assume
(1) For all t € [a,b] the critical point of f; is c.
(2) The maps f; are uniformly expanding, that is, there exist constants 1 <
A < A < oo such that for all ¢ € [a, b],

b
Dfi

0,clcr +1flelor

1
<5 and |Dfy|  <A.

(3) The map
t € [a,b) — f, € B*
is of class C2.

Each f; admits a unique absolutely continuous invariant probability measure
and its density p; has bounded variation (see [12]). By Keller (see [9]),

1
(5) lpt+n — pelpr < Clh(log ] +1).

3. GOOD TRANSVERSAL FAMILIES

It turns out that we can cut the parameter interval of a transversal family f;
in smaller intervals in such way that the family, when restricted to each one of
those intervals satisfies stronger assumptions. Here, we introduce the notation of
partitions following Schnellmann in [19]. Let us denote by K(t) = [f2(c), f:(c)] the
support of p;.

Let P;(t), j > 1 be the partition on the dynamical interval composed by the
maximal open intervals of smooth monotonicity for the map f/ : K(t) — K(t),
where t is a fixed parameter value. Therefore, P;(t) is the set of open intervals
w C K(t) such that f/ : w — K(t) is C* and w is maximal.

We can also define analogous partitions on the parameter interval [a, b]. Let

xo ¢ la,b] — [0,1]
t — ft(C)

be a C? map from the parameter interval into the dynamical interval. We will
denote by

2i(t) == fl (xo(t)),
j >0, the orbit of the point o (t) under the map f;.
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Consider a interval J C [a,b]. Let us denote by P;|J, j > 1, the partition on the
parameter interval composed by all open intervals w in J such that z;(¢) # ¢, for
all 7 satisfying 0 < i < j, that is

fizo(t) = fiTH(c) # ¢,

for all t € w, and such that w is maximal, that is, if s € Jw, then there exists
0 < i < j such that x;(s) = c.

The intervals w € P; are also called cylinders.

We quote almost verbatim the definition of the Banach spaces V,, given in [19].
The spaces V,, were introduced by Keller [10]. Let m be the Lesbegue measure on
the interval [0, 1]

Definition 3.1. (Banach space V,) For every ¢: [0,1] — R be a function in
L'(m) and v > 0, we can define

0sC (1,7, x) = esSSUP V|(z—ry,aq) — €88 inf P[(z_y 747
Given A > 0 and 0 < o« < 1 denote

1 1
[Y|a = sup 7/ osc (¢, v, z)dz.
7 Jo

0<y<A

The Banach space V,, is the set of all 1 € L*(m) such that ||, < co, endowed
with the norm

[9le = 1o+ 1l -

We quote almost verbatim the definition of the almost sure invariant principle
given in [19].

Definition 3.2. Given a sequence of functions &; on a probability space, we say
that it satisfies the almost sure invariance principle (ASIP), with exponent
k < 1/2if one can construct a new probability space that has a sequence of functions
oi, © > 1 and a representation of the Weiner process W satisfying

e We have

almost surely as n — oo.
e The sequences {o;};>1 and {&;};>1 have identical distributions.

Definition 3.3. A C? transversal (see equation (1)) family of good mixing C*
piecewise expanding unimodal maps f, t € [¢,d] is a good transversal family if
we can extend this family to a C? transversal family of good mixing C* piecewise
expanding unimodal maps f, t € [c — d,d + ¢], for some § > 0, with the following
properties

(I) There exists jo > 0 with the following property. For every t € [¢, d] and for
each j > jo there exists a neighborhood V of ¢ such that for all ¢’ € V\{¢}
and all 0 < i < j, we have f},(c) # c. In particular the one-sided limits

lim M and lim M
=+ D7 (fe(c)) v=t= Df (fr(c))
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exist for every j > jo, and there is C' > 1 so that

,fJ
R 7 A I P
C = |v=tt Df) (f(c))

and

fl
lg lim M
C 7 |v=t= Dfy (fe (o)
forall j > jo and ¢t € [c — 6,d + 4.

The map f; is mixing and there are constants § >0, L >1and 0 < § < 1
such that for all ¥ € V,

L], < LA™ 1), + L.,

for all ¢ € [¢ — §,d + ¢]. Here L, is the Ruelle-Perron-Frobenious operator
of f; given by

<G,

1

)= 2 By

fe(y)=z

Y(y)-

There is § > 0 such that for every ¢ > 0 there is a constant C satisfying
1 .
>l
WEPr|[a—8,b+3] Zhleoloo
for all n > 1.
For all ¢ € V,, such that o(¢) > 0 the functions & : [c — d,d + ] = R

i > 1, defined by
&) = s (o) - [ )

satisfy the ASIP for every exponent v > 2/5.

There are positive constants C, Cy, Cs, Cy, Cs, Cs and 3 € (0,1) such that

for every t € [c—d,d+0] and its respective density p; of the unique absolutely

continuous invariant probability of f;

A;. The Perron-Frobenious operator £; satisfies the Lasota-Yorke inequal-
ity in the space of bounded variation functions

1L¥¢| sy < CsB |0y + Cs|9| L1 (m)-

As. We have p, € BV and |pi|sy < C:'l.
Aj. We have p, € BV and |p}|py < Cy. Moreover

M¢—1

pio) = [ i) du+ D sul0 o)
where Hy(2) =0if v < a and Hy(z) = —1if x > a,
_ pi(c) pi(c)
O =10 T DA
and
sl(®) s1(t)

T Do)
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A,. We have p} € BV and |p}|pv < C5. Moreover
M;—1

pi(x) = / ) dut S sh(t)H i (),
0 k=1
where ~
/ C4
< —.
5O} < 15 =T o)

(VI) Let jo > 0 be the constant given by condition (I). For all ¢,j satisfying
0<i,j<joandt € [c,d], such that t + h € [c — 0, d + J] we have

cg IiJ(tv h),
where I; ;(t, h) is the smallest interval that contains the set
i i , 1 , .
{0 @ 77T Sl o ST ) Sl 0 F ().

Remark 3.4. Conditions (I), (II) and (IIT) are exactly those that appears in
Schnellmann [19], with obvious cosmetic modifications.

Remark 3.5. If f; is a good transversal family then of course Eq. (4) converges
to

if and only if

, ' 1 Rt +h) — Ry(t)
(10) hmm{t €l 4o | ( )= Ry ) < y}

h—0 —log |h
converges to it as well.

Proposition 3.6. Let f;, t € [a,b], be a transversal C* family of good mizing C*
piecewise expanding unimodal maps. Then there is a countable family of intervals
[ciyd;] C la,b], i € A CN, with pairwise disjoint interior and

m([a, 8]\ [ Jlei, di]) =0,
i€A

such that fi is a good transversal family on each [c;,d;], i € A.

Proof. Since f; is transversal, there is just a countable number @) of parameters
where f; has a periodic critical point. Consider €2 = [a,b] \ (Q U {a,b}). It follows
from the analysis in the proof of [4, Theorem 4.1] and [, Proposition 3.3] that for
every t' € () there exists e; = €1(¢') such that if [e,d] C (' — €1, + €1) then the
family f; restricted to [c, d] satisfies condition (V). By Schunellmann [19] for every
t' € Q there exists ea = €2(t’) such that if [¢,d] C (¥’ — €2,t' + €2) then the family
ft restricted to [c, d] satisfies conditions (I), (IT), (I1I) and (IV).

We claim that for every ¢’ € Q there is e3 = e3(¢') such that if [¢,d] C (' —e3,t +€3)
and ¢ > 0 is small enough then the family f;, with ¢ € [c, d], satisfies condition (VI).
Indeed, since c is not a periodic point of f, there is e3(¢') > 0 such that

(11)

n:=min {|f/7 T (c)—¢[: 0<j <jo and 0<i<jo,t € (t' —egt' +e3)} >0,
Since t € [t/ — €3/2,t' + €3/2] > f; is a C? family the map
(t,h) = fian(f (0))
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is continuous for every 0 < ¢ < jg and every j satisfying 0 < j < jo. Therefore
there is 1 := 71 (4,j) < €3/2 such that, if |h| <~ and t € [t/ —e3/2,t' +€3/2], then

[ (fl () = T (A () <,

and

|fen () = FUTH )] <
forall 0 < j < joand 0 <i < jo. Let v:= min{v1(¢,7) : 0< 5 <jp and 0 <i <
Jo}. In particular if |h| < v, and t € [t — €3/2,t' + €3/2] then ¢ ¢ I, ;(t, h) for all
0<7<70,0<2< jo.
Let €4(t') = min{e1 ('), e2(t'),v}. Consider the family F of intervals [c,d] C [a,b]
such that [c,d] C (¢ — eq(t'),t' + €a(t’)) for some ¢’ € Q. By the Vitali’s covering
theorem there exists a countable family of intervals [c;,d;] C [a,b], [ci,di] € F,
1 € A C N, with pairwise disjoint interior and

m(la,0)\ | [es di]) = m(Q\ [Jlei,di]) = 0.

iEA 1EA

We will also need

Lemma 3.7. Let
t € [a,b] — fi
be a good transversal C? family of good and mizing C* piecewise expanding unimodal
maps
fe:0,1] — [0, 1].
If ¢ is a lipschitzian observable satisfying oy # 0 for every t € [a,b] then

J= inf |J(f,,v)], o= inf . s= inf |Sy], £= inf |,
J téfi,bﬂ (fr,ve)], @ téﬁ,b]at(¢) s téfi,b]| t ten[g’b]\tl

are positive, where Sy and ¢y are as defined in Fgs. (3) and (2) respectively.

Proof. The function
t— J (fta ’Ut)

is not continuous in a transversal family (see [3]). Indeed, its points of discontinuity
lie on the parameters ¢ where the critical point c is periodic for f;, where this
function have one-sided limits. However, in [3], Baladi and Smania showed that if
v, converges to v and f, converges to f, and J(fn,v,) — 0 when n — oo then
J(f,v) = 0. From this follows that J > 0. In [19], Schnellmann proved that ¢ — oy
is Holder continuous. Therefore, ¢ > 0. Suppose that lim,, 1 (t,) = 0, where $; is
as defined in Eq. (9). Remember that (see [2] and [1]),

M, —1

(12) Pt, = Pabs,ty, + Psal,t, = Pabs,ty + Z
k=1

s1(tn)
———  H.
B () 0

where pgps 1, is absolutely continuous, (pgps,t, )’ has bounded variation and

(13) |(Pabs.t,) 1BV < C.

Taking a subsequence, if necessary, we can assume that lim, ¢, = ¢ and that p;,
converges in L'(m) to p;. But if lim, s;(t,) = 0 then by Eqgs. (12) and (13) we
conclude that p; is a continuous function. But this is absurd since s;(t) # 0 for
every t. [
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Remark 3.8. As an example, we have the family of tent maps defined by
|t ifx <1/2,
filw) = { t—ta, ifa>1/2,

t € (1,2). Tsujii [20] showed that the family of tent maps is a transversal family.
We can observe that, since f; is a piecewise linear map for all ¢, the density p; is
purely a saltus function.

4. DECOMPOSITION OF THE NEWTON QUOTIENT FOR GOOD FAMILIES

In this section we will assume that f; is a good family. In order to prove Theorem
1.1 we will decompose the quotient
Ro(t+h) —Re(t)
h
in two parts which will be called the Wild part and the Tame part of the decompo-
sition.

Definition 4.1. Let g : [0,1] — R be a function of bounded variation and ¢ € [a, b].
We define the projection

I, : BV — BV
g > g—p[gdm.
Indeed II; is also a well defined operator in L!(m) and

sup || gy < 00 and sup [Il¢|p1(m) < oo.
t t

A function g € L*(m) belongs to II;(BV) if and only if [ g dm = 0. In particular
the operator (I — L)~ is well defined on IT;(BV).We are going to use the following
observation quite often. If [ g dm = 0, and

o
9= Zgia
=0

with g; € BV and the convergence of the series is in the BV norm, then

(I—L)g=>> (I— L) 'T(g:).
i=0
Note also that
HtO[,t :,CtOHt.

Proposition 4.2. Assume that f; is a family of piecewise expanding unimodal
maps as defined in section 2 and let L; be the Perron-Frobenius operator. Then

— py (L -~
PP — (1= Lisn) 1< ”h(pt)h tW).

Proof. Note that (I — £;)~! is well defined in II;(BV) and is given by

(I=L)"(p) = Lilp),

1=0

for every p € II;(BV'). Therefore, the result follows as an immediate consequence
of the identity

(L = Litn)(pr+n — pt) = (I = Le)(pt) — (I — Lign)(pr)-
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d

Proposition 4.3. Let f; be a C? family of good mizing C* piecewise expanding
unimodal maps that satisfies property (V) in Definition 3.3. There exists C > 0
with the following property. For every t € [a,b] such that the critical point of f; is
not periodic, we can decompose

Livn(pt) = Li(pr)
h

=@y +1p

where

1 oo
=D sk (O (waxft sy ~ Hyr (c)))
k=0

and Ty, satifies

/Thdm =0 and sup|ry|g, <C.
h£0

We will prove Proposition 4.3 in Section 8. We will call W(t, h) = (I—L;15) 1@
the Wild part and (I—L;y 1) try, will be called the Tame part of the decomposition.
Note that

R‘i’(Hh})l_ ) _ /qﬁW(t,h) dm+/¢>([— Lign) try dm.

Definition 4.4. Given h # 0 and t € [0,1], let N := N (¢, h) be the unique integer
such that

(14)

1 1
Do) = M B GOT

There is some ambiguity in the definition of N (¢, h) when fF(c) = c for some k > 0.
But since the family is transversal, there exists just a countable number of such
parameters (see [3]).

Given a € R define
la| = max{k € Z: a > k}.

The following proposition gives us a control on the orbit of the critical point.
Proposition 4.5. For large K > 0 and every v > 0 there exists § > 0 such that for
every small ho there are sets T9, . . T% C I = [a,b], with Ty, , CT9 , for every
h' satisfying 0 < ' < hg, with the following properties

A. limp o m(T9, ho) = m(l), ) >1—7.

B. Ifte 1"5/7% and |h| < k' then there exists N3(t, h) such that

(15) L% log N(t,h)| < N(t,h) — N3(t,h) < C5Klog N(t,h)

and

(16) c¢ i
for all 0 < j < N3(t,h) and 0 <14 < N3(t,h) — j, where I, ; is the smallest
interval that contains the set

FEET 0, 777 ), flon o HTH0) fEE) 0 £ ()}

C. For everyt € Fh’,ho the critical point of fi is not periodic.
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D. If0<h < <ho then T, CT?,

where m is the normalized Lebesgue measure on I = [a,b].

We will prove Proposition 4.5 in Section 6.

The following proposition is one of the most important result because it relates
the Birkhoff sum to the Wild part. That is, the integral of the observable ¢ with
respect to the Wild part is related to the Birkhoff sum of ¢ and this fact will allow
us to use Lemma 5.1.

Proposition 4.6. Let f; be a good transversal family. Let ¢ : [0,1] — R be a
lipschitzian observable. Ift € F?L,hw where Fi’ho is the set given by Proposition /.5,
then

Na(t,h)

/d)W(t,h)dm = s1(6)J(fr,ve) Z < /gzﬁdut) +0 <1oglog |h|>

7=0
We will prove Proposition 4.6 in Section 7.
Proposition 4.7. Let f; be a good transversal family. Let ¢ : [0,1] — R be a

lipschitzian observable. Ift € Fi’ho, where Fi’ho is the set given by Proposition /.5,
then

Ng(
B0 = 5 (st~ f o) 0 (b
d + O | loglo
+ StJt /¢(I*£t+h)717"h dm.

The proof follows directly from Propositions 4.3 and 4.6

5. PROOF OF THE CENTRAL LIMIT THEOREM FOR THE MODULUS OF
CONTINUITY OF Ry

To simplify the notation in this section, glven a transversal family ¢t — f; we will
denote ST = s (t), J/ = J(f1, 05 fsls=t), of = of (¢). Moreover

L = / log | D fyldyl

where u{ is the unique absolutely continuous invariant probability of f;, and
1
oL
L

When there are not confusion with respect to which family we are dealing with, we
will omit f in the notation.

Lemma 5.1 (Functional Central Limit Theorem). Let f; be a good transversal C*
family of C* unimodal maps and o(¢) # O for every t. For each t € [a,b] let us
consider the continuous function 6 — Xy (60,t), where

Xn(0,1)

= Ut\l/]v Z /(15 due) + N&(T;\/Livej)( s(f () /¢ dpy).
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These functions and the normalized Lebesgue measure on [a,b] define a distribution
on the continuous functions space and this distribution converges to the Wiener

D
measure. We denote Xy —n W.

Proof. By Schnellmann [19] we know that the sequence of functions
1 ; !
60 = o- (7@ - [ o)
Ot 0
satisfies the ASIP for every exponent error larger than 2/5. By [15, Theorem EJ,
the ASIP implies the Functional Central Limit Theorem for Xy (0, t). O

We are going to need the following

Proposition 5.2 ([6]). I
(17) I Py L

Qn

where L is a positive constant and (ay)n is a sequence such that a, — oo when
n — oo, then

Xy sy W
implies
Y, —n. W,
where Y, s
0] —1

F > = [0 du)+ L2 L8 gm0y~ [ 6 a),

ot/ Vn(t)

Proof. See [6], page 152.
From now on we will denote

1 _s2
—0o0

The following lemma will be used many times

Lemma 5.3 (A variation of Slutsky’s Theorem). Let A, : [0,1] — R be functions
and Q,, C [0,1] be such that
liminf m(Q2,) > 1 —1,

and for every y € R the sequence
an(y) =m(t € Q,: An(t) < y)
eventually belongs to
O(yv 6) = (DN(y) -6 DN(y) + 6),
that is, there is ng = no(y) such that a,(y) € O(y,€) for every n > ng. Then
A. There exists § > 0 such that if B, : [0,1] — R is a function such that

liminf m(t € [0,1]: |Bn(t) — 1| < 0) > 1 — 1,
then the sequence
bn(y) =m(t € [0,1]: Ap(t)Bn(t) <)
eventually belong to O(y, €+ 37).
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B. There exists § > 0 such that if By, : [0,1] — R is a function such that
limninfm(t €10,1]: |Bp(t)| < 0) >1—17,
then the sequence
bu(y) = m(t € [0,1]: An(t) + Bu(t) <)
eventually belong to O(y, e + 37).

Proof of A. Define
DZ(Q) = {t € Qy: An(t) < y}
D% ={te€[0,1]): |B,(t) — 1| < 6}
Dip(y) ={t € [0,1]: A,()B,(t) <y}
Choose § > 0 such that

sup sup |Dy(y) — Dar(y(1 =) <,

yEeR |§|<8
and
sup sup [Da(y) — Da(y(1 - &)1 <.
yER |§/|<5
Ify>0

D((1 = 8)y) N D} C Dip(y) and DYip(y) N D NQy, € DE((1—68)"1y),
Thus, if n is large
m(Dip(y)) m(D%((1—6)y) N Dg)
m(D3((1=0)y)) —v = Dn((1—0)y) —e—~
DN(y) — €= 277

AVARAVARLY]

(18)
and
(D4g(y) N D)+

m(D}%p(y) N D N Q) + 2y

m(DE((1=6)""y)) +2y <Da((1—6)'y) +e+2v
Dy (y) + €+ 37,

m(D%p(y)) m

VAN VAN VAN VAN

(19)
and if y < 0 we have
Di((1=6)"'y) N Dy € Dip(y) and Dip(y) N DN Qy C DE((1 = 0)y),
and an analogous analysis as above gives

m(D’p(y)) € O(y, €+ 37).
0

Proof of B. Since the proof is is quite similar to the proof of A, we will skip it.
O

Lemma 5.4. Lett s f;, t € [a,b] be a good transversal C? family of C* unimodal
maps. Let: [c,d] — [a,b] be an affine map, Y (c) = a and p(d) = b and gg = fy(9)-
For every small enough h # 0 we can define

1 Ry, (0+h) =Ry, (0)
Qy(h,y) =<0 € e, d: § g <y
’ { 0455777/~ log|h] h
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and

1 Ros(t+w) —Ro, ()
Q = : |
H(w,y) {te[a’b] Up{gg‘.ﬁ%( b B
If

m(Qy(h, y))
m([c, d])
eventually belong to O(y,~y) when h converges to 0 then
m(§2y(rh,y))
m([a, b])
eventually belong to O(y,~") when h converges to 0, for every v’ > ~. Herer =1'.
Proof. Tt follows easily from Lemma 5.3.A. O

Remark 5.5. Lemma 5.4 implies that it is enough to show our main theorem for
families parametrized by [0, 1].

Proposition 5.6. For every v > 0 there exists Q1 with the following property. Let
fi be a good transversal C? family of C* piecewise expanding unimodal maps with
(@) # 0 for every t and

Ly

1-—
Lt

Q= sup < Q1.

t,t’ €lc,d]

Then for every h small enough we have

L o dl- 1 Ry(t+h) — Ry(t)
(e, d]) {te e, dJ: atétStJt\/W< h ) Sy}

belongs to O(y, 137).

Proof. Without loss of generality we assume that [c,d] = [0,1]. It is enough to
prove the following claim: For every sequence

hy, —n 0

and every v > 0, the sequence

sn—m{te [0,1] : 1 <R¢(t+hn)R¢(t)> Sy}

O'tgtStJt\/—IOg‘hnI hn

eventually belong to the interval O(y, 127).
Fix a large K > 0. By Proposition 4.5, for every v > 0 there exist 6 > 0, hg > 0
and sets Fi,ho? I‘go C I, with Pi,ho C I‘ZO, for every h # 0 satisfying |h| < hg, such
that

A limy m(F‘fL’ho) =m(l) )>1—1.

B. Ift e Ffuho then there exists N3(t, h) such that

|5 log N(t, )] < N(t.h) = Na(t, h) < CsKlog N(t. h)

and ‘ ‘ ‘
¢ [fivno 7 (e) ik o f(0)]
for all 1 < j < N3(t,h) and 0 < i < N3(t,h) —j.



CLT for the modulus of continuity of averages of observables in transversal families 15

For all h # 0 and t € [0, 1], define Ny(t,h) = N3(t,h) if t € Fi,ho and |h| < hg, and
Ny(t,h) = N(t, h), otherwise. Therefore, for B we have

for every (t,h). Since

1 1
<I|h| < ,
DR (o = M D )
we have
1 N(t,h) —log || 1 N(t,h)+1
k k
N ; log [Dfi(f(c))| < N(h) = N ];1 log |Df:(f¥(c))].

By Schuellmann[18], we have for almost every ¢

N
. 1
i D tos | DA e = L= [10g|DAd i

N—+oco

which implies that for almost every ¢

. —loglh|
}llli%m = /10g|th| dpug.
And by Eq. (20)
—log|h| _ —log|n| _ —log |h|

N(t,h) = Ng(t,h) = N(t,h) — CsKlog N(t,h)’
we also have

(21) lim M =1.
h—0 —log|h|
for almost every ¢ € [0,1]. Fix to € [0, 1] such that L, = minc[o,1)L¢. Then
Li/LiyNy(t,hy) P 1
ST
By Lemma 5.1 and Propostion 5.2,
(23) Y, (0,t) 5, W,
where Y, is given in Propostion 5.2 and W is the Wiener measure, with
Ly
L—to.

(22)

I/n(t) = N4(t, hn)
Hence, taking 8 = 1 we conclude that

(24) Yo(1,t) 25, N(0,1),

where N (0, 1) denotes the Normal distribution with average zero and variance one.

Let

- Lol
Ly

Fix o € (0,1/2). The Lévy’s modulus of continuity theorem (see for instance
Karatzas and Shreve [8]) implies that for almost every function f with respect to
the Wiener measure there exists C'y such that

[F(0') = f(O)] < Cplo" — 0]

() = sup
telo,1]
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for all #’,0 € [0,1]. In particular there exist H = H(v) and a set €, of a-Holder
continuous functions in C([0,1],R), whose measure with respect to the Wiener
measure is larger than 1 — ~, such that

1f(0') = f(O)] < H|o" — 0]
In particular for f € €2, we have

(25) max | f(1) = f(0)] < HQ®,

0e[1-Q,1]
Due to Eq. (23),

liminf m{t € [0,1]: , HH% | Y, (1,t) = Y, (0,t)| < HQY} > 1 —~.
n c[1-Q,

In particular if
L
D, ={te0,1]: |V,(1,t) — Yn(%,tﬂ < 2HQ}
t

then liminf, m(D,) > 1 — . Let us apply Lemma 5.3.B with Q, = D,,, A,(t) =
Y, (1,t) and B,(t) = Yn(LL—tto,t) —Y,(1,t). Observe that by Eq.(24) the sequence
an(y) defined in Lemma 5.3 eventually belongs to O(y,¢) for all ¢ > 0. Hence,
taking € =y, there exists d; = d1(7) > 0 such that if 2HQ® < § we have

(26) m(t €[0,1]: Yy (2o

eventually belongs to O(y,47). Choose Qo = Qoy > 0 such that if @ < Qg then
2HQ* < §;. Note that

|.N4(t:hn)J -1

@) =y P > (ot - [ 6 dm)

By Eq. (21) and Lemma 5.3.A, the sequence

[Na(t,hn)]—1
m(t € [0,1]: a\/lL:Z|h| Z (o(fF () — /¢ due) <)
t\V — n k=0

eventually belongs to O(y, 7). Applying again Lemma 5.3.A, with

[Na(t,hn)]—1

:7[40 kC — dt
0= X )~ o)

Bn(t) = II:: 5
v 0

there exists d2 = d2(7) > 0 such that if

Ly

-1
Ly,

(28) < 8y

for every t then

[Na(t,hn)]—1
m(t € [0, 1]: O% > k) - [odu) <y
ty/ — 10 n k=0
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eventually belong to O(y, 107). Choose @1 = min{Qq, d2} such that @ < @1 implies
Eq. (28). Finally by Propositions 4.6 and 4.7, if 0 < |h,| < hg and ¢ € Fin,ho we
have

N3(t,hn)
Ro(t+ hn) — Ry(1) ; / 1
= — loglog —
ST ;0 Of1(9)) = [ édur | +0 | loglog 7=
1
I—Lip) by dm.
+ S, 7, /¢( t+h) Th dm
Since
log log
[hnl N
+/log ﬁ
and
sup (I = Lign)~'rar < oo,
we have
N3 (t,hn)
Ry(t + hn) — Re(t) 1 ( .
- o) ~ [ odue) +r(t.h).
SiorJihn/—loglhy|  ot\/—log|hy| JZ:; '
where
lim sup |r(¢ hy)| =0.
"otery o

Hence, it is easy to conclude that
R¢(t + hy) — R¢(t)

StO'tétJthn\/ — IOg |hn|

NS(t7hn)
1 .
@) =t 3 (0l O) - [ o) 10,
04/ —1og || ; !
for every t € I“;Lm ho+ Where
1
by = ——
t T,

and
lim sup |r'(t, h,)| = 0.
n "/Gfin,ho

Since m(F‘fL’ho) > 1—+, we can apply Lemma 5.3 (remember that Ny (¢, h) = N3(t, h)
for t € I‘fl) hy) to conclude that the sequence

m(t € [0,1]: Ro(t+ hy) — Ry(1) <y
StO'tgtJthn\/ — lOg |hn|

eventually belong to the interval O(y, 137). O

)

Lemma 5.7. Let [¢;,d;] C [a,b], i € A C N, be intervals with pairwise disjoint
interior and such that

mfo 81\ | leirdi)) = 0.

i€EA
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If t — fy, with t € [¢;,d;], are good transversal families such that for all i € A and

y € R we have
1 1 Ry(t+ h) —R¢(t))
——————m <t € e, di]: ( <y

m([ei, di]) { e i) o1lySJi/—log |hl h

eventually belongs to O(y,~), then

L o dician: Wbl an L Ryt + 1) — Ro(t)
mla 0] {te[,b].m—he[,b} d ( )Sy}

o101SJin/—log |h|

eventually belongs to O(y,~y + €), for every e > 0.

Proof. Define

1 R¢(t + h) — R¢(f)>
Q(h,y) =<t €la,bl: t+ h € [a,b] and <
(h.9) { . ] o o L (Rl y
and

1 R¢(t + h) — R¢(t)>
Qi(h,y) =<t €lc;,d;]: t+ h € [a,b] and < .
(h,9) { frvd] o and — e (R y

Of course Q;(h,y) are pairwise disjoint up to a countable set, Q;(h,y) C Q(h,y)
and

Then
m(Qh,y)) =Y m(Qi(h,y)).

i€A
Given € € (0, 1), choose ig such that
m(Ui>iU [CZ‘, dz]) < E’fTL([CL7 b])
For every ¢ < iy there exists h; > 0 such that for every |h| < h; we have

m($2%(h,y))

belongs to O(y,y +¢€). Let h = min;<;, h;. Let

Uio (h,y) = Ui<iyQ:(h, y),
and

Wiy (hyy) = Uicio [ci, di].
Then for |h| < h we have

Uiy (h,y)) _ ~ _mlles,di]) m(@h,y)
)~ L

o (B,
) (h’ Wlo(hvy)) m([clvdZ])
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is a convex combination of elements of O(y,~ + €), then it belongs to O(y,y + ¢€).
We conclude that

(Dn(y) =7 — 2¢)m([a, b))

< (D (y) — v — )(m([a, b]) — em([a, b]))

< (Dn(y) =7 — e)m(Wi, (h, y))

< m(Us,(h,y))

< m(Q(h,y))

< m(Ui, (h,y)) + em([a,b])

< (Dn(y) + 7+ e)m(Wiy (h, y)) + em([a,b])
(30) < (Dn(y) + 7 + 2¢)m([a, b))

Proof of Theorem 1.1. Remember that
t— Ly

is a continuous and positive function on [a,b]. Given v > 0, let @1 > 0 be as in
Proposition 5.6. Then there are k > 0 and intervals [¢;, d;], i < k = k(), which
forms a partition F of [a,b] and

L 7
sup ‘1 — L—t’ < Q1
t,t/e[ci,d{,] t

for every ¢ < k. Then the restrictions of the family f; to each one of the intervals
[¢i, d;] satisfy the assumptions of Proposition 5.6. Now it remains to apply Lemma
5.7 to the full family and the partition F. Since v > 0 is arbitrary we completed
the proof of Theorem 1.1. O

6. CONTROLLING HOW THE ORBIT OF THE CRITICAL POINT MOVES

The aim of this section is to prove Proposition 4.5. Let us denote by I = [0, 1]
the interval of parameters.

Remark 6.1. In Schnellmann [19, Lemma 4.4] it is proven that there is C; > 0
such that if N > 1, |t; —ta] < 1/N and if w1 € Pn(t1) and wy € Pn(t2) have the
same combinatorics up to the (N — 1)-th iteration then

‘th]:](xl)

<y,
DfN(z2)| ="

for all 1 € w; and x5 € ws.
We also observe that if z,y € w € Pn(t), then by the bounded distortion lemma,
there is Cy > 0 such that

< (o,

| Dff (x)
Dfi(y)

for every j < N. Let

M= sup sup |d.fi(c)l,
0<5<jo t€(a,b]

and let us define
(31) C3 = max{C, M},
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where C is the constant given by the transversality condition (see Eqgs (6) and (7))
and

Cy= sup sup [0 fi(x)|
t€[0,1] z€[0,1]

To prove Proposition 4.5 we will need

Lemma 6.2. Let N3 € N and w € Py, be such that

lw] < i
=N

Ift € w and
(32) dist(t,0w) > (M + 1)|hl,
where
(33) M > max{C,C3Cy, CiCyC3}
Then
(34) ¢ & y(th)

for all0 < j < N3 and 0 < i < N3 — j, where I, j(t, h) is the smallest interval that
contains the set

U A O AR ON LS A O AN A C)S
Proof. Let jo be as defined in condition (I) (see Definition 3.3). If j > j, define

i1 = 0 and if 0 < j < jp define iy = jo. First of all, we observe that if 0 < j < jg
and 0 < i < jo then Eq. (34) follows from condition (V' I). In particular

(35) c ¢ I, ;(t, h) for every i < i;.
Hence, it is left to consider the cases when

Jo<j< N3 and 0<i< N3—3j
and

0<j<jo and jg<i< N3—j.
We claim that
(36) ¢ L -
Indeed, if 0 < j < jo, it follows from condition (VI). Now, if jo < j < N3, due to
condition (1), Egs. (6) and (7) the maps

0ecw— fi(c)€0,1]

are diffeomorphisms on their images for every jy < k < N3 and they do not contain

the critical point in its image, for all jo < k < N3, 8 € w. In particular if w = (s1, s2)
then

(37) c ¢ {f5(c): 0 €w} = (fi(c). £, (c))

for every jg < k < N3. Therefore,

¢ & [f(0), fn(o)].
By the Mean Value Theorem and Remark 6.1, for every j < N3

L =150 (0] = 100157 (oo, Il < C3| D5, (o, (€))]Ih] < CsCLIDFI (fule)lIhl-
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Moreover,
(38) | fren(F(0)) = £ (51 ()] < 100 fo( £ (€))lo=0,][h] < Cilh].
By assumption, d([t,t + h], Ow) > M|h|. Thus,
(39) jw| > (2M + 1)[A].
If Ow = {s1, 52} and s € [t,t + h] then
5 ) = fE @)l = 1005 ()=, llsi — s
> @wféz (fo, ()| M|R|

(40) > ﬁ\fo(ft(c))lMlhl

for every k < N3. Taking k = j we obtain

_ ) M
een(F @) = FFE)] < Calhl < e lh

(a) < G DRI <17 ) - 7 O
Hence,
(42) el S ) € () 5570,

In particular
c ¢ Io;(t,h) = I ;(t, h).

We concluded the proof of our claim. Now fix 0 < j < N3. We are going to prove
by induction on ¢ that, for every iy < i < N3 — j,

(43) cé¢ 1 (t,h),

The case i = i; follows from Eq. (36). Now suppose that Eq. (43) holds up to
i. Provided that i > i1, we have i + 7 + 1 > jo. Therefore, by Eq. (37), with
k=14 j 4+ 2, we obtain

FEODT (fan() € (FUTDTIT(e), flirD+HL (),

And as in Eq. (40)

(44) ST (0) = LD feen(eD 2 G DI (feen(e)) MR
Moreover by induction assumption and Eq. (35) , we have for every 0 < k <1
C € Ik’j (t, h)

Thus the points
f (@) and f14 ()
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have the same combinatorics up to 4 iterations of the map fi45,. Then by Remark
6.1
LR @) = FEA UL ()] < Ca D (FEE DI (e) = £ (o)

< Col DN (FE (D100 ] (0) o=, |1

< C3Ca|DfIE (1 ()IID £, (fou(c))|R]

< C1CCs|Df, erl(fﬁ_l( DD t+h(ft+h(c))||h|
(45) < O\ O DFED T (frin(0)|IA)

fl(e) and f},,,(c)
have the same combinatorics up to ¢ + 1 iterations of the map fiyn. Then by
Remark 6.1

DT A @) = DT (@) < CaADFD T L (@I (©) = ()]
< CoIDF T ()1196 £3 (0 oo, 1]
< CoCs DI (f (e IDSE (S EDIIA
< C1CoC5|Df ““)“(fm( NID LI Feen(e))]|]

(46) < C1CoCs DT (Fein(e)) ).
Since v
C,C,C
10203 < =—~ 0103

Eqgs. (44), (45) and (46) imply that

O F ) B O RN W AR ON AR O)
In particular, ¢ ¢ I; ;(t,h) for all 0 < j < N3 and 41 <i < N3 — j. O

To prove Proposition 4.5 we need to show that, for each given h # 0, for most of
the parameters ¢ € [0, 1] we can find a cylinder w € Py, (¢,n) Where [t,t + h] is deep
inside w (see Eq. (32) ) and moreover N3(t,h) satisfies Eq. (15). To this end, for
most ¢ we will find w, with ¢ € w, in such way that |w]| is quite large with respect to
|h| and N3(t, h) satisfies Eq. (15), but not necessarily the whole interval [t,t + h]
is deep inside w. Then we will use a simple argument to conclude that for most of
the parameters ¢ this indeed occurs.

Let P; be the partition of level j > jo. Observe that for each cylinder w € P;

1 J
|UJ‘ SCS ()\) )

where Cj3 is the constant given by Eq. (31).
Let N > 1 and define j = j(N) as

B log(C5N)
_{ e J+1.

Note that the cylinders of P; divide the interval of parameters I in subintervals of
length shorter than 1/N. Let J be one of these intervals in P;. And we will denote
by tg the right boundary point of J.
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Observe that, by defintion, there is an integer ¢, 0 < ¢ < j such that
zi(tr) = £ () = c.

Fix an integer 7 such that 21/7 < v/A.

23

Definition 6.3 (The sets Ey 5). Let J € P;, j = j(N). Let En ; be the family

of all intervals w € Py such that for every k satisfying

0<k< LIClogNJ

-
there is not
@ = (a,b) € PN—I_IClogNJ+q7 with w C @ C J,

where

g =min{(k+ 1)7, | Klog N|}
and for every ¢ satisfying

0<i<N-—|[KlogN]|+kr
we have

z;(a) # ¢ and z,;(b) # c.
Define
En = U En.j.
JEP;

Let us denote by |En| the sum of the lengths of the intervals in families
Given n € N and @w € P,, define

0 :=min{|f{(c) = fl(c)|: fi(e) # fl(e)i,j<T}
mingeg 0y

O := 5

Notice that if @ D w then §; < 4.
Let C, be such that
|fi(c) = fe(o)| < C|t — 5]
for all i <7, s,t € [0,1].

Lemma 6.4. There is C > 0 such that the following holds. If & € P;, i > jo, with

|©] < 1/i and t € @ then

C Dfi(fe(o)l [Dfi(fe(c))l

Moreover, if w € Py \ En then there exists i satisfying
N —|KlogN|] <i<N

such that w C @ € P; and if

(47)

CL|(;)|<5@
then
(@) > 65
and
1 0 B 1
48 - Y < ol<C——
(48) LI )]

for every t € @.
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Proof. If t € @ € Pj, then by the Mean Value Theorem for some 6; € @

|21 (@)] = 190 f5 7 ()lo=0, 13

then

DS U @DIE o

IDfE(feleDll@] _
0103 o 03
and
|2(@)] < Cs|Dfg, (fo, ()I@] < CLC3 DFE(fele))ll],
therefore, Eq. (47) holds. Now assume w € Py \ En . Then there exists k satisfying
Klog N
)

1<k<{

and
@ = (a,b) € Pn_|Klog N|+kr
such that z;,(a) = ¢ = z;,(b), where
N — |[KlogN| + (k—1)7 <ig,ip < N — |[Klog N | + kr,
in particular
TN |Klog N|+kr(@) = (fg(c), £, (c)),

where
0 < ng,np <7, with ng # np.
Thus,
lzN— K10 N 42 (@) = [fae(c) — £ (c)]
> |fae(e) = far () = [f2" (e) = [ (o)
(49) > 255~ Crla— bl > 6.

O

Since d5 > 0 depends only on a fixed finite number of iterations of the family f;,
it will be easy to give positive lower bounds to it that hold for most of the intervals
w. Indeed define

A‘JS\,O ={t€[0,1]: for every N > Ny if t € w € Pn_3|x10g n| then d,, > d}.
Note that A?VO - A‘ISVOH. Moreover §’ < § implies A%o > A‘Jsvo.
Lemma 6.5. Given v > 0 there exists § > 0 such that
lim [AY | >1—7.
Nolgloo| N0| = Y
Proof. Since f; is a transversal family, the set of parameters ¢ such that f/(c) =

fg (c) for some i # j, with 4,7 < 7+ 1 is finite. Let ¢1,...,t,, be those parameters.
The function ¢ — §; is positive and continuous on

O=[0,1]\{t1,.. -, tm}
Choose Ny large enough such that

#{w € Prny—2|K10g NoJ: @N{t1, ..o, tm} # 0} < 2m.
Thus,

2C'm

Hw € Pry—2|Klog Noj: @ C O} > 1 — Vo 2[KIog No] 1—7,
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provided Ny is large enough. Let
0= %min{éw: w € Py_2ikl0gN]>, @ C O}.
Note that § > 0 and
Ay O | J{w € Py—akiogn): @ C O}
for every N > Ny, provided that Ny is large. ([

Proposition 6.6. There exist C’l, Cy > 0, that do not depend on IC, such that for
every K' < K there exists K = K(K') > 0 such that

(50) |Ey| < KNC2=OK,
The proof of this proposition follows from

Lemma 6.7. There exists C; > 0, that does not depend on IC, such that for every
K' < K there exists K = K(K') > 0 such that if J € P;, j =j(N), and En_j is as
defined before, then

(51) |Eng| < KN-OX
We will prove Lemma 6.7 later in this section.

Proof of Proposition 6.6. We have

Ex= | En.
JEP;

Since there are at most 27 cylinders of level j, we have by Lemma 6.7 that there
exist C; > 0 and K = K(K') such that

05(C3N) N 1082 .o A L
(52) Ex| < 20555 g N-OK — gopes i -0k
O
Define
(53) QND = {t S [0, 1] VN > Nydw € PN*UCIOgNJ\ENfLIClogNJ and t € LU} .
Note that Qn, C Qny+1-
Corollary 6.8. If Co — C1K < —1 we have
4 li Q =1.
(54) Jim [0
Proof. Notice that
Qn, = ﬂ U w.
NZ2No we€PN_ | K10g N|\EN— K log N
If we choose K/ < K such that Cy — C1K’ < —1 we have
0S| = wl| < K(N — |Klog N |)C2=C1K" Nozpe g
| No g
N>Now€EN_ |Klog N N=>Ny
O

From now on we choose and fix K > 0 satisfying Co — C1K < —1.



26 AMANDA DE LIMA AND DANIEL SMANIA

Corollary 6.9. For every v > 0 there exists § > 0 such that
lim m(Ay NQn,) >1—7.
No—o0 0

Definition 6.10. Given § > 0 and hg > 0, define
o,
as the set of all parameters ¢ € [0, 1] such that for every h, 0 < |h| < hg, there
exists k satisfying
N(ta h) - 2L610gN(t7h)J < k < N(t7h) - LC]OgN(t,h)J

such that if ¢t € @ € Py, then |z4(0)] > 4.
Given t € I“,sm and h # 0, let Ny(¢,h) be the largest k with this property.

Definition 6.11. Given h and t € [0, 1], define
(55) Ni(tB) = N(t,h) — [Klog N(t, )],
and for hg > 0 define

N1 (ho) = te[{ﬂ}‘ngho N1 (t, h)
Since

lim max ; =0

N—ootelo1] [DFN(fi(e)l
we have

lim N (ho) = +oc.

i, (o) = oo

Lemma 6.12. For every v > 0 there exists § > 0 such that
li ) >1—7.
Am m(Th,) > 1=

Proof. By Corollary 6.9 there exist 6 > 0 and Ny such that

m(A‘]svo NQy,) >1—7.
Choose hg such R

Ni(ho) > No.
Let |h| < hg. Then
N(t,h) — |[Klog N(t,h)] > Ny.

Ift e A?VO N Qn,, choosing w such that ¢ € © € Py (4,n)—|K1og N(t,n)] then

W & EN(t,h)— | Klog N(t,h)] -
Hence, by Lemma 6.4 there exists k satisfying (here N = N (¢, h))

N — |KlogN| — [Klog(N — |[Klog N|)] <k <N — |[KlogN|
such that if t € & C & € Py then
|xg(@0)] > de >0

since t € Ajsvo, so that Cp|@] < § < d5. Therefore, Ffm B) A‘Js\,0 N Qy,- O
Definition 6.13. Given hg > 0 and ¢ > 0, for every h such that |h| < hg let Ai,ho
be a covering of F;SLO by intervals w with the following properties

P1. There exists t € F‘,SLO such that t € w € Py (¢,n)-
Py Ift' Fgo and t' € w then W’ C w, where t' € W' € Py, p)-
P3. There does not exist ¢ € I‘io such that t” € w” € Py, ) and w G w”.
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One can check that one such collection Ai’ho does exist. Indeed, consider the
covering of Fio given by

{w: there exists t € I') such that t € w € Py, t.n) }-

Of course this covering satisfies property P;. Remove from this covering all intervals
w that do not satisfy property P3. Then the remaining collection is a covering of
F‘,Sm satisfying properties P1, Po and P3. Note also that the distinct intervals in
Ai)ho are pairwise disjoint. Indeed, if w,w’ € Ai,hov with w # w’ and wNw' # (
then either w G w’ or w' G w, which is in contradiction with property Ps.

We note that [A9 , | > m(T), ), since A , covers I'} . Here | A}, ,, | denotes the
Lebesgue measure of the union of the intervals in the family A;Su ho-

Lemma 6.14. If hg is small enough there are Cs > 0 and Cg > 0 such that the
following holds. Given t' € I‘io, let w be the unique interval in A?L,ho such that

tcw. Lette Fio be such that t € w € Pr,,n)- Then

(56) L% IOgN(t’, h)J < N(tlv h) - N2(ta h) < CYBIC IOgN(tla h)
and
(57) lw| > CdN (', h)< 5 |h|.

Proof. Consider w’ such that
tedw e ,PNz(t’,h)'
Then by property Py we have w’ C w. Since
0 < (e (@) = 100N P (@)]|w| < L3 DF M (fu (@),

it follows that
0 1 , C1C5
S Ga TG S e gy
Since t,t’ € w, there is C7 > 1 such that
I S S e P —
CrIDfy(fe () — IDf(fele))] = [Dfp(fer ()]
for every i < Na(t, h). Choose C such that

1) 1
(59) c2¢3 > N
Then
No(t',h) > Na(t,h) — C,
otherwise
1) 1 < C1Cs
CCs (DM (fu(en] — DA (i)
< C1Cs 1
D RN (NI (D N (1, ()
< C1C3 1

i

X DN (fu (o))
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which contradicts Eq. (59). In particular
N(t',h) — No(t,h) > N(t',h) — No(t',h) — C
> [elog N(#',h)] — C
> [5log N(t',h)].
Note that the lower bound holds if kg is small enough. Thus,
N(t',h) > Na(t, h).

Moreover,
1
|| < ;
IDFYN M (f ()]
< 1 1
T DTN (TG ) DY (£ ()]
1 C1

< o .
DTN (IR )y D NP (1 ()
On the other hand,

1
In| >
DY (f (o))
1 1 1
(60) > _ L
D YNGR pN2EIHY )y D N2 (e)) A
Then

log | D 17N (£ )] log Oy
< log [DfN TR (£ENT ) 4 log A
and consequently
N(t',h) — No(t,h) < C3(N(t, h) — Na(t, h)) + Cu.
In a similar way, we can obtain

N(tvh) - N2(t7h) S OB(N(t,7h) - NZ(tah)) + CA147

where
A log A
C =
3 log A
and
~ log Cl
Cy = .
* log A

N(tah) = N(t7h’) - NQ(t7 h) + N2(t?h)
< 2elog N(t,h)+ N(t',h)
N(t,h)
<
~ N(t,h) — 2elog N(t, h)
< 2N(#', h),

N(t', h)
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provided that hg is small. Consequently
N(t',h) — No(t, h) < Cs(N(t, h) — No(t, h)) + Cy
< C52|Klog N(t,h)| + Cy
< C52K log[2N (¢, h)] + C4
(61) < CsKlog N(t', h).
Here the last inequality holds if hg is small enough. Moreover, by Eq. (58)

s ! 5 I T R R O]
~ CG DR (fu (o)) GiCs D (fu(0))]
(62)
5 )\N(t',h)—Ng(t’,h) 5 o N (1, 5 on
= N(t'.h) z e h)_l‘h| = 7N(t/7h)lc¥|h|'
CrC3 D M (fu(e))| — CrCs C1C3A
Hence, we obtain Eq. (57). O
Choose € > 0 such that )
— <1l—e
VA

Lemma 6.15. Given M > 0, define
M+1
1—e€

tho,M ={t:tewe Ai,ho and dist(t, Ow) >

A}
Let hy = (1 — €)hg. Given h satisfying 0 < |h| < hqg, let

i(h) = max{i € N: |h| < (1 —¢)" " thg}.
For every h > 0 define

f‘i,ho = F?LO n ( m B;Sh‘,ho,M)'
)

i>i(h
Then
7 a0 a0
A IfO<h<hthenly , C Fiz,ho’
B. We have

%E}I}) m(f‘g,ho) = m(]'—‘;slo)’

Proof. Note that

. log hy ilog(1 —¢)
N(thy) > ——2 - = 2
trer[l(l),r}] (t,hi) 2 log A log A
where los h log(1— o)
og hg ilog(l —e¢
— 0 d ————=>0.
log A -0 an log A o

Therefore, if hg is samall enough, there are K;, K5 > 0, such that

te[0,1]

Ah = U w.

wGAi’ho

Define
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Ifwe Az’ho then there is t € I‘io such that t € w € Pny(s,n)- By Lemma 6.14
M+1

m(w N (B por)°) = mit’ € w: dist(t', 0w) < l |h|}
oy —€
M+1
e L
1—e€
< 2(M +1)|h| W]
(1= €)fw|
206(M + 1
(63) = ( ;im wl-
0(1 —e)N(t,h)* 2
Choose K large enough such that Klog A > 2. Then
= = 2C6(M + 1)V
(64 m(Ap, 0 (BS. )€) < -
) ; ( ( hi,ho,M ;5(K1—|—iK2)K12/\

In particular

m(Th 0 ( () Bionoar)) =m@h) = m(Th, 0 ( () Bisgar)?)
i>i(h) i>i(h)

>m(Th) = > mTh N (B} hoar)?)
i>i(h)

(65) >m(Th) = Y m(An, 0 (B, pgn))-
i>i(h)

Eq. (64) implies that
lim > m(An, 0 (B}, o )°) =0

h—0
i>i(h)

O
Proof of Proposition 4.5. By Lemma 6.12 for every v > 0 there exists § > 0 such
that for every small hy we have
m(I ) >1—.
Choose M satistying Eq. (33). Define
Fi,ho = f‘g,ho\@

where fi h, 18 the set defined in Lemma 6.15 and @ is the countable set of parame-
ters where f; has a periodic critical point. By Lemma 6.15 Property A. holds. Let
t' €T} ., with |h| < ho. There exists i > i(h) such that
hiv1 < || < hy,

where h; = (1 — €)'hg. Thus, N(t/,h) = N(t',h;), for some j € {i,i + 1}, and
consequently Na(t',h) = Na(t',h;). Then there exists a unique w € Ai,,m and
t € TY  such that t,t' € w € Py, p). Moreover, since t' € Bij,ho,M we have
M+1

— hj > (M +1)|h|.

Define N3(t',h) = Na(t,h). By Lemma 6.14 we have Eq. (15) holds. By Lemma
6.2, Eq. (16) holds.

dist(t', Ow) >
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d

6.1. Proof of Lemma 6.7. Let J be the interval as in the statement of Lemma
6.7. The sets Ey,; ‘live’ in the parameter space. To estimate its measures we will
compare them, following [18]|, with the measures of similarly defined sets in the
phase space of the map f,.
Definition 6.16 (The sets Ex ). Let J = [tz,tr]. Denote by Ey., the set of
all
n € Pn (tR)

such that for all k satisfying

0<k< L’ClogNJ

T

there is not

7€ Pn_|kiog N|+j(tR), 1 C 1,

where
j =min{(k+ 1)7, [Klog N|},
such that
fin RN () € Pyt (tr)-
Using a strategy similar to the one applied in [18], we estimate the measure

|Ex.s| in terms of the measure |Ey ,|. To this end we need to define the map U;.
Recall that if F is a family of disjoint intervals then |F| denotes the sum of the
measures of the intervals.

Definition 6.17 (The map Uy). Let J = (t1,tr). Consider the map U;
Uy : PN|J — 'PN(tR)

defined by Schnellmann [18, proof of Lemma 3.2] in the following way. Let w €
Pn|s and choose t € w. Since w is a cylinder, it follows that z;(t) # c for all
0 < j < N. Therefore, there is a cylinder w(zo(t)) in the partition Py (t) such that
o(t) € w(zo(t)).
Let
Us(w) = Ut N (W (20(1))),

where Uy 1, N : Pn(t) = Pn(tr) is such that for all n € Py (t), the elements 1 and
Uy (n) have the same combinatorics.

symb, (f{ (1)) = symby, (fi,, Ue,en.v (1)),

for 0 < 4 < N. Schnellmann [18] proved that Uy, n is well defined when f; is
a family of piecewise expanding unimodal maps satisfying our assumptions. In
particular, if ¢ < ¢’ and a certain symbolic dynamic appears in the dynamic of f;,
then it also appears in the dynamic of f.

Therefore, the cylinder w’ = Ujy(w) = U t,, v (w(x0(t))) has the same combina-
torics as w, that is,

symb(z;(w)) = symb, , (f7, (w)),

when 0 < j < N. Since there are not two cylinders in Py (tg) with the same

combinatorics, the element w’ does not depend on the choice of ¢ € w. Therefore,
U is well defined.
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Lemma 6.18. Ifw € Ey ;, then Uj(w) € EN,tR. Moreover, there exists C' > 1
such that

(66) w| < C'ftds ().
In particular
(67) |En,g| < C'|ENinl-
Proof. Note that U;(w) € En, follows from the fact that w and Uy(w) have the
same combinatorics [18]. By [18, Lemma 3.2|, there exists a constant C’ > 1 such
that

w| < C'ltdy (w)]-
Thus,
(68) Ensls Y lwls Y ClUsw)l < C'Ewql-

wEEN, s w€EN, s
O

Definition 6.19. For each 7' € Py_|k10g v (tr), define the set

EN,tR,n' = {77 € Pn(tr):n € EAN’tR and n C 77’}.

Lemma 6.20. Let ' € Py_|xiogn|(tr). Then

(69) BEN oy < 2L5F 1T
Proof. Define
log N
ko = Vc o8 J .
T

Notice that
N >N — |KlogN| + kot >N — .
If N =N — |KlogN| + ko7 define k1 = ko. Otherwise define k; = kg + 1. For
every k satisfying
0<k<k,
define families of intervals F in the following way. If k < k¢ define
(70)
Fr={nCn': )€ Pn_|KclogN|+kr(tr) and there is 1 € EAN’tR’T,/With n Cn}
otherwise k = k1 = kg + 1 and

(71) Fir = EN oty
Note that if k; = ko then we also have Fj, = EN,tR,n’~ We claim that
(72) #Fp < 28,

We observe that, taking k = ky in Eq. (72) we obtain Eq. (69). Note that either
Fo is the empty set or Fy = {n'}. Then #F, < 1. Moreover, it is easy to see that
if Ng11 € Fi, with k < k1, then there exists a unique 7y € Fj, such that Mx41 C 7.
Therefore, it is enough to show that for each 7, € Fi, with k < kq, there are at
most two intervals 7,11 € Fga1 such that g1 C 7. Indeed, given k < kq, for
every f)y, € Fr we have 7y, € Py_ |k 10g N|+k+(tr). Moreover, there is j such that for
every fr41 € Fry1 we have g1 € Pn_|klog N)+j(tr), With kT < j < [Klog N,
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and j < k7 + 7. Note that if the closure of 7jx+1 = (a,b) is contained in the interior
of 7, then for every x € 711 we have ff (z) # ¢, for every p < N—[Klog N | +k7.
Furthermore, there are n,, n; such that
fiy(a) = c= f2(b),
where
N — |[Klog N| 4+ kT <ng, ny <N — |KlogN| + j.
We conclude that
ftjifuc log NJ+k'r(ﬁk+1) €Pur(tn).
where j — k7 < 7. Therefore, if n C 7jg41, with n € Py (tg), then n & EN’tR’,,/ and
consequently 741 & Fr41. Since there are at most two intervals Py _ | 10g N |+; (tR)
whose closure is not contained in the interior of 7, we conclude that there are at

most two intervals in Fj; that are contained in 7.
O

Lemma 6.21. Let n',n" € Py_|kiogn|(tr) such that
N—|Klog N N—|Klog N
foy Tl gy = fl=Ulos Ny,

tr tr
Then . .
N— og N - N— og N -
ftR [flog J(ENth,"]/) = Jtr log J(EN,tR,n“)-

Proof. Let ' = (y},v4) € Pn(tr), with ' C 7/, be a cylinder in Ey ¢, . Then
N—|Klog N N—|Klog N N—|Klog N
(73) fon” 1N @) € g ) = g ).

tr tr
Remember that since w’ € Py (tgr), it follows that for all z € w’

(74) fi(@)#c forall 0<i<N,
and if y € Ow’, then there exists j, 0 < j < N such that ng (y) = c. Define

a; = fRee NIy,

Then ftjifuc log N (W) = (a1,a2) is an open interval and, by Eq. (73), we have
(a1,a2) C ftjifm 108 N 17y Therefore, there is an open interval w' = (W, y5) Cn”
NoWRe NI (1) = (a4, az) with

such that f, .
ai = fo )

tr T/
We claim that w' is also a cylinder. Indeed, let © € w”. Then, since w” C 1" and
7" is a cylinder of level N — |Klog N|, it follows that

fin(@) # ¢,
forall 1 <i< N — |Klog N|. On the other hand,

N—|Klog N N—|Klog N
ftR Uetos J(WH):ftR log J(‘*”I)a

and by Eq. (74), we can conclude that f{_(x) # c for all i satisfying N—|Klog N| <
1 < N. Therefore, for all z € w”, we have ft’R(a:) #cforall 0 <i < N. Now, let
Yl € Owq. Since w” C 1, we have two cases.

Case 1: y;' € On". In this case, there is an integer j, 0 < j < N — [Klog N, such
that i, (u}) = c.
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Case 2: y/ ¢ On’’. In this case, fth (y!) # cforall0 < j < N — |KlogN|. Then

N—|Klog N N—|Klog N N—|Klog N
o [Klog J(ygl):ai: N [Klog N o [ log J(n//):

fg; K log N (n'). Thus, y} belongs to the interior of n’, which implies that there
exists j such that N — [Klog N| < j < N such that f/_(y;) = f/.(y]) = c.

(y%) belongs to the interior of

Therefore w” € Py (tg).
By assumption, w’ € EANV,&R,,]/. Then for all 0 < k < LW%NJ, if
O € PN—|Klog N|+j(k) (tR)s
where w’ C @y C 1’ and
j(k) = min{(k 4+ 1)7, [Clog N |},
then there is z;, € Jw satisfying
(75) ffé(z,/c) = ¢, for some q;,, 0 < ¢, < N — |Klog N| + kr.

In the same manner as for w’, there exists a unique cylinder &y, € Py _ LK log N |+ (k)

wr C 1", such ft]:i_mlogNJ (Or) = ftNR_UCk’gNJ (Wg). Note that w” C @g. Let
z)l € 0wy, such that

N—|Klog N N—|Klog N
frimUloa NIy — pN=IKlos NI iy

If 2z} € 91" then there exists i < N — [Klog N such that f{ (z}/) = c. Define
qp; = i-
If 2/ ¢ A" then 2, & 9. Thus, fth (2;,) # c for every ¢ < N — |Klog N|, which
implies that

N —|KlogN| <q, <N —|KlogN| +kT.
Then ftql/’; (z) = ffé(zjc’) = c. Define ¢}/ = q..
In both cases we have 0 < ¢! < N — [Klog N| + kT, then w” € EN,tR,n”‘

N—|Klog N ~ N—|Klog N ~
frooe N (B ) € FRTRE N (B ).

A similar argument shows that
J[N_UClogNJ (EN,tR,n’) C ftNR_LKlogNJ (EN,tR,n”)'

tr

O

Proof of Lemma 6.7. Due to Lemma 6.18 it is enough to show that for every K’ < K
there exists C' > 0 and K = K(K') > 0 such that if J € P;, j = j(N) then

(76) |Eniq| < KN~CK
By Lemma 6.20 we have

#EN,tR,n’ < o BN |1
Let us define the set
Q= U PN By )
N E€EPN_|Klog N|(tR)
Note that

EAN,tR C ft—R(N—l_)ClogNJ)(Q).
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Therefore, if p,, is the acip for f;,, we have

(77) Hig (EN,tR) < Htg (Q)

In [18, Section 6.2] it is shown that there is C7 > 1 such that for every density p;
of the unique acip of f;

1

a < pt((E) < Cia
for p-almost every x € [0, 1], then

Byl < CTI0)

Since J € Pj, j = j(N), there exists an integer p, 0 < p < j such that z,(tg) =
[, (fer(c)) = c. In particular
#{f.(O}izo=p+1.
Thus,
#{fon TN, 0 € Prikiog v (tr)} < (p+ 1)
Therefore, by Lemma 6.21,
~ 2 2 N—|KlogN|
|Enal < 017101 = C7| U fon EN (B )

<CP(p+1)? max |f - Uelee NI ()
N EPN_|Klog N (tR)

N EPN_|Klog N|(tR)

) 1 |Klog N |
scfprir(5) #{nePainls, )

) 1 |Klog N | K log N ) 1 UC102gNJ
<O (p+1)? ()\) 2l < O (p 4+ 1)? <>\)
1 | Klog N | 1 (C N) 2 1 |Klog N |
< C/2 -2 < 012 Og 3 -
=217 =™ log A )
< KN
where K = K (€). O

7. ESTIMATES FOR THE WILD PART

We start this section with a technical lemma.

Lemma 7.1. Given a good transversal family f; there are constants L1 and Lo
such that the following holds. Let ¢ : [0,1] = R, |@|p1(m) > 0, be a function of
bounded variation such that

/tpdm =0.

_ "2
(1 - L)"'), < (L1 log 'w'fv + L2> el
Ll

Then

Proof. Let 7 > 0 such that
LB [lgy = lelpr -
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And let jp the smallest integer such that jo — 1 < 7 < jo. Hence, we have
Jo 00
(I = L) p) =D Lile) + Y LULP(9).
=0 =1
Observing Assumption (V) Ay, the fact that |Lie|py < L6 p|pv, when [@dm = 0

with constants L and # uniform in t, as well as the elementary facts that |L¢|;n =1
and ||z <|-|Bv, we see that

_ ‘ L io
(I = L)7 ()|t < o+ Dleelr + mlﬁi ¢lBv

, L . -
< (o + Dl + 7= (CoB”lelpy + Gl )

i lelBv .
< (Clﬁjo ||<P||L1 + (Jo + C2)> lolrr

By the choice of jj, we have the desired estimate.
|

The following proposition will be quite important to study the Wild part of the
decomposition. Denote

supp(v) = {z € [0,1]: ¥(z) # 0}.

Proposition 7.2. There exist K, K|, K} > 0 such that the following holds. For all
i,k>0,te€[0,1] and h # 0, let

1 7
Prin = 3Lt (Hftmff(c)) - Hft(mc))) :

Then
(78) |(Pk,i,h‘L1 <K,
and
K
(79) “Pk,i,h’BV < e
|h
Furthermore,
(80) (I = Logn)  Wesn(rin)| 2 < Kimax{0,log |oxinl sy} + Kj.

Proof. Note that

| (Hmh(ff(c)) - Hﬁ(f,,k(c))) |11

< |Hy, i) = Hiirreep o
(81) < (SItlplvtI)lh\,

and, by Assumption (V) in Definition 3.3

L (Hft+h(ff(0)) - Hﬁ(ff(c))) |5y
(82) < 2G5 + Cs(sup |vy])|h| < C.
t

Thus, we have Egs. (78) and (79). In particular
e (Orin) L1 (m) < 2]0k,in|Lr(m) < 2K,
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and if A is small

it (prin)Bv <|@kinlBv + |@kinlBV Sl[lp] lpelBv < Clk,inlBv,
tel0,1

where C' > 1.
Now we can easily obtain Eq. (80) applying Lemma 7.1.
O

Proposition 7.3. Let ¢ be a Lipchitz function. There exists K > 0 such that the
following holds. Let t € Fi’,ho and 0 < |h| < h'. Then

1, K
(83) var (3 Li (Hy,,,ro) = Hrreon)) < : :
Bt ( Jean(f(c)) Fe(f£(e) |h||ng( thrl(C))l

and

/ o)LL, (Hf,,+h,<ftk<c>>h Hft(fi“(C))> (2) di
(84) = (ST () (f () + OUDFL(FF () Ih)),
where 0 < k < N3(t,h) and i < N3(t,h) — k.

Proof. By Eq. (16), the points fg:_ﬁ}(@7 Fean(fE@©), fi(fF(c)) belong to the same
interval of monotonicity of f/, . Let

¢: Dom(¢) — Im(¢)

be an inverse branch associated to such interval of monotonicity, that is, ( is a
diffeomorphism such that f;,, (¢(y)) =y for every y € Dom(() and

{55 (0, Fean(fE(0)), Fe(fE(0))} € Im(Q).

Hence,
Lin (Hpoisteon — Hpgrren) (@)
1
85 = ———1 om z) | H k(e C.’,E 7H1 k(e z .
) = g e (o) — Higpo )

There is a constant K > 1 such that for all ¢t € [0,1], h, and 4, and every interval
of monotonicity @ of f/,, we have

1

L. thi+h(yl)
%S\ o)

, <K
thz-;-h(yQ)

for all y1,y2 € Q. Now we can estimate the variation of the function in Eq. (83)
using familiar properties of the variation of functions (see Chapter 3 from Viana
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[21], for instance).
varo, 1] (ﬁhh (Hft+h(ff(c)) - Hft(f,f“(c))»

1
= Var[O,l] <W ]lDom(C) (l’) (HftJrh(ftk(C))(C(x)) — Hft(f,’f(c))(C(x)))>

1
= Varpom — 7 | sup (Ht - H )
Dom(¢) (DfH_h(C(x))) 0.1] Fern(fFE() Te(fE(€)

1
+25up | T pon() (@) bup(Ht ~H,, )
0.1] (thJrh(C(x)) Dom({)\T 0.1] Fern(fE() Fe(fE(e)

1
+sup | ————<Lpom(c)(x) | vary, Hy, ko)) — Hp (5 (e
[0,1] (thJrh(C( )P )) ° 1}( Jren(zete) Fe(£ )))

<2V&I‘Dom(o - 1 + - L
= Dfi (@) ) IDfi (fFER )]

Now, note that since ( is a diffeomorphism, it follows that

1 1
var pom(¢) (W) = Valrm(¢) (W)

1
B /zm(g) P (nyti+h(y)>

i 2 J—1
:/ . D firn(fiin (y)) dy

dy

Z i—i ; i—1
= DI w) (Dl )

Dom(Q)
< Kq|I < -
< BlimlOF < K et )

CKs,
‘th+h(fk+1( DIk

Here we used that

! D2fn(f10: ()

9 2
= DI @) (DFean (L )

< —
< Ni—J
Jj=1
(86) S Klu
and that
Im(Q) < K— POl g 1

D (D] ™ IDFLn (FER ()
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Therefore,
K3
DS ()]

Finally, by Eq. (16) note that the combinatorics up to i iterations of ft’fhl( ) by

67 varoa (Lo (Hpron = Hraren) ) <

the map fi,, is the same as the combinatorics up to i iterations of f**!(¢) by the
map f;. By Remark 6.1 we obtain

1 < 1
DRl ~ DG )
Egs. (88) and (87) give us Eq. (83). Since

(88)

SUPP% (Hponisren = Husren) = Uern ). i FE ),

by Eq. (85) we conclude that

1 % i
Zijp = supp7-Li, (Hft+h(ff(c)) Hy, px( c))) FEEa(FE©@), fLn (FETH ()

By Eq. (16), the points ftk:',g(c), feen(fE(e), fi(fF(c)) belong to the same interval
of monotonicity of f;, ,. Hence,
. 1.
diam suppy Ly, (Hft+h<f,k<c>> - Hﬁ(ff(e)))
= diam [f; 5, (FF(0)), fin(f7 T (@))]
Zj:;i( ( ) — ft+h( k+1(c))‘

< KIDfin(FFH ) fern(fE(0)) = fi(fE ()]
< K|IDfi o (ff (e o))l sup ve|h|

(89) < CIK D (o)l sup ve||f].

Therefore,

k(e —Ht tkc
/¢ t+h( f+h<ft<>>h f(f()))(x)dx

L / c < ff+h(ft’€(0))_Hft(f{“(6)))(aj) i

h

, C(Hy o rey — He e
(90) +/(¢(x) BT (e)) Eim( Funlate) ~ T ))) (2) da.

Note that

. /H o — Hep (prie
/ i+h< ft+h(ff(c>>h Fo(FEC )))(I) i

Hy, o oorien — Heopre
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Due to Eq (89) and the fact that ¢ is a lipschitzian function with Lipschitz constant
L, and that f{***1(c) € Z;

C(Hy ey — Hip e
‘/ S (0)) M( f+h,<f,,<>>h f(f,())>(x) da]

H T
_/Z 16(z) — S(FHH(0) \£t+h< Feen(fE(e) f(ft<>>>(x)‘dx
ik

h
= Hy, (150
h

. ) H k(e
< LORIDAE D] swp |1 (28502 B

(92) < LGIK|Df( f“(@))llsgpvtIQIh\-

Proof of Proposition 4.6. Let ® be as in Proposition 4.3, that is

1 o0
Cn = > sk (g (Hf,,+h<ff(c>> - Hft(f,f“(c») ‘
k=0

Given t € Fi,ho' Let Ns(t,h) be as in Proposition 4.5. Since t and h are fixed
throughout this proof, we will write N3 instead of N3(t, h) and N instead of N (¢, k).
Let us divide ®;, as follows

dy, = S1 + 5.
Where
1
Si=2 sk (e (Hmh(f,,k(c)) - Hft(fl‘(C))>
k=0
and
1 oo
S2=7 S 1 (e (Hft+h<f, Fe) ~ Hﬁ(ff(e))) :
k=N3+1
Let us first estimate Ss.
1 o0
(I =Lon) 'Sz = & 5k+1 ) = Lign) M (Hfm(ff(c)) - Hft(ff(ﬁ))) :
k=Ns-+
Thus,
(I = Leyn) "' S|,
0o 1 .
< D sl 5 (T = Logn) Mg (oo tren = Hrgrren)
k=N3+1 Lt

By Proposition 7.2 and Lemma 7.1, taking

1
? = g, Metn (Hfmuf(c)) - Hf%fﬂc))) ’
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we have,
I—Lipn)t 1
(I = Lean)™ 5 Men (Hft+h<.ff<c>> - Hﬁ(ff(c))) .
< K log — Ih\ + Ky < K1log AN T + K,
< Ki(N +1)logA+ Ky < K3N + Ky.
Therefore,
_ =1 KsN
(T = Lign) S| < D 1 BN + Ki) < == + Ko
k=N3+1
KsN

1 14+C5K log A
) L K.

+ K¢ < K7hfslosA <1og 7

— \V-C5Klog N

It is left to analyze S;. Applying the operator (I — L;15)7 %,

(I = Len) ™" (S1) = hZEHthm WWen (Hy, 00 = Hrisen) -
=0 k=0

Then

(I = Logn) ™" (S1) = Zskﬂ O Linlleen (Hy, ey — Hpgreen)

=0
=511 + 512~
Where
3 N3—k 1
Su=2 skni(t) Y 5 Lieallesn (Hponisron = Hrirreon)
=0
and
3 00 1
S12 = Z seni(t) D T Lisalleen (Hpovireon = Hpiscon)
k= i=N3—k+1

= Z skl 5t+h o (1= Lusn) ™ o ern o L35 (Hppustion ~ Hration)-

‘We observe that

N3
B el
Szl <O lskit BT = Logn) ™" o Mewn 0 L+ (Hfuh(ff(c)) - Hﬂ(ff(c))) o
k=0

Let

N3—k
P = Etf’h (Hfuh,(ff(c»*Hff«ff(c)))v
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By Proposition 7.3 it follows that
93)  leklsv = var(er) + okl

C
(94) < — + K
|R|[D YR (R )]
DY ()]
3(t,h)—
DY TR )|
< C|DNEMTINI) (NsEIFL )y D R (f,(e))] + K
(95) < CANEWFI=NEITR 4 gy

By Lemma 7.1 we have
(I = Liyn) ™" o Mepn(en)|

=|(I = Lezn) ™" 0 Mpgn 0 Ei]vff:k% (Hft+h(f{“(c)) Hy,(ge ) 2
< K/ log(CANGM+I=Ns(th)tk 4 pe ) 4 k!
< Ki log(KQAN(t,h)+1—N3(t,h)+k) + Ké
< K3(N — N3 +k+1).
Therefore,

N3

S12l,0 < K3 ) skqr(OI(N — Ny + k +1)
k=0

SK3(N—N3)ZF+K3 <Z)\k+2)\k)
k=0 k k=0
< K4KlogN + K5 < K (loglog + 1)

A

We proceed to examine St.

= gy feontsie) ~ Hy )
S11 = ZSkJrl Z £t+h< el n Lt )
k=0
Si11
Ns Na—k Hy  prion — Hp o
'3 Jt + (C ft ft C
= s > Liy, (mh/ Foon(FE( ))h 0) dm)_
k=0 i=0
Si12
Note that
N Ns—k H keeyy — Hep (ke
S112 = — ZS}c+1(t) Z Pt+h/ ( fon(fi ))h Felfe( ))) dm
Ng, k

:—Zsk+1 3" (el fE(e) + O(h)) prn.

=0
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Adding and subtracting the sum

N3 Ns—k
S s Y vl @)
k=0 i=0
we obtain
S112 = S1121 + S1122,
where
N3 Ns—k
Sti21 = — ZSkH(t) Z vy tk(C))Pt
k=0 i=0
and
N3
Si122 = —(Pt4n — Pt Z Sk+1(8) (N3 — k)i ( ft Z Sk+1(8) (N3 — k)pesn.
k=0
By Eq. (5)
N3

1
Stz < K suplullil g (7p) 3 lssa (010 = 1)
+lpesnlys 10(h |Z|sk+1 (N5 — k)

< <K2h|log| 7 + K3|0(h >N3Z G

< K4yN (|h|log |1| +1]0(h )|) < Klog — ] <h|log(|h|) + |O(h)|> )

Therefore, taking ¢ : [0,1] — R a lipschitzian observable,
/ H(@)W(x) do = / o(@)(I — Loyn) ' Bp(z) du
/¢ (S111 + S1121)(7) dor + O (loglog |h>
Ns—k _H
[ ft+n ftk c ft f{c c
_ZSkJrl Z/¢ 2)Litp ( ol ())h : ()))(x)dx

N3—k

_ZskJrl(t) > wlff(e /¢ z)pe(x )d$+0<10g10g |h>
k=0

=0

By Eq. (84) we have

/ oz t+h< Fein (! <c>>h fo(§] <c>>> (z) do
= (I () o £ (e)) + OUDFH(FF ()| R])

)
ot st + o DEGE O,
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Since
N N—i
(96) §K1k20<x> ZO< > <
it follows that
[ ot
_ Z e (Ou e >N;k (ot = [ o) +0 (togton 717
_ I;)Sk-kl(t)vt(ftk(c)):\%: (qﬁ(ftj(c)) — /¢ th) +0 (log log |h|>

N3+1

= Z ( /¢ dﬂt) Zsk+l vi(ff(e)) + (loglog |h>

Adding and subtracting the series

til <¢>(f§ (c)) — / ¢ dm) §3k+1(t)vt( fF ),

we obtain

N3+1 oo
j s1(t) k
P(x)W(z)de = o(fi(c) — | ¢ du - ve(fy (e))
/ ( / : ) ,;J DiF(fi(e)"

Note that |I;| < co. Indeed,

N3+1

L] < Ky Z o(fi(c)) —

>(5)

o0
k=

J

/¢ dpse
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Ns+1
[ o@mwi@nds = s Y-

2 (¢(ff () — / ¢ dut) +0 <log log }ﬂ)

(97) = ()Y (otsiten = [0 aus) +0 (togton 7).
O

8. ESTIMATES FOR THE TAME PART

Let v be a signed, finite and borelian measure on [0,1]. Denote by |v| the
variation measure of v and by ||v|| the total variation of v. Define the push-forward
of v by f; as the borelian measure

(fiv)(A) = v(f7(4)).
Note that for every bounded borelian function g: [0,1] — R

/gd(ft*y):/goft dv.

It is also easy to see that

|fiv] < fElvl.
Suppose that v has the form
(99 y= 1t Yt
zeA

where 7 € L (m) with support on [0, 1], m is the Lebesgue measure, A C [0,1] is
a countable subset, ¢, € R, with
D x| < o,

z€A
and 0, is the Dirac measure supported on {x}. Then
vl = lxlm+ ) 1gsl0s,
z€A
]l = |7l L2 m) + Z |G-

zeA
Furthermore, fv has the form

ft*V = Et(’fr)m + Z qm(;ft(ac)-
zeA

Proposition 8.1. Let f; be a C* family of C* piecewise expanding unimodal maps.
Let v be a signed, finite and borelian measure. Let i, : [0,1] — R, t € [0,1] be such
that 1, € L™(v) and t — iy is a lipschitzian function with respect to the L (|v|)
norm, that is, there exists L such that for all t,h we have

[Vtn — Pilroe @y < LiA|.
Define

Aun(z) = / dff (W) — / df ().

0
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Then there exist positive constants K1, Ko such that
At plrrmy < (L + K1 Ko)|[v]] |
for allt € 10,1], h, where
K, = sgp |Vt oo vy and Ko = stuf |0 fi ()]

Proof. Observe that

Aun() = /0 dff o () — / af ()

0
=/ df:+h(¢t+h’/)_/ df s n (ev)
0 0
Aq
+ / dftn () — / afs (o).

Ao

Therefore,
|An(z)] < |Ar(z)] + |As(z).
We first estimate Aj.

1A ()] < / Lowa) dlffin(brint — )] < / Low) d(fun(been — ellv])

< /ﬂ[o,x] o fran|Vern — el dlv] < |Wepn — Vilpee |yl < Lilv||]A].

In particular
|A1|pim)y < LiJv||R].
We now estimate As.

Ao(z) = / Lo.a) dffon () — / Toap dff (e0)
= / Ljo,2] © fran d(iv) — / Ljo,4] © fed(1iv)

:/(lfglh([o,x]) = Ly-1(0,07)) dthrv).
Therefore,

[B2(2)] < /|1f;1h<[o,r]) = Ly qoapll¥el dlvl < Kl/‘ﬂft;lmo,m]) ~ Lyt oy AV

where
K, = sup Vt] Lo (1)
By the Fubini’s Theorem

Bl < K [ [ 1 000 = Lo @) dI) dno)

(99) Ko [ [ 1000 ® = Lo,y @] di(a) dvl ()

IN

Note that
|]]'ft+h (o, x})(y) - ]lf;l([o’x])(yﬂ =1y, (2),
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where

Uy ={z €0,1]: feyn(y) <z < fi(y) or fily) <z < firn(y)}-
Observe that
m(Uy) = |fesn(y) — fi(y)| < Ka|h|.
Thus,

IA

Dol < K / / 1y, (z) dm(x) dlv|(y)

(100) K IG||v]||A.

IN

O

Remark 8.2. To avoid a cumbersome notation, in the Proof of Proposition 4.3 we
will use the following notation. Whenever we take the supremum over all ¢ € [0, 1]
we actually take the supremum over all ¢ € [0, 1] such that f; do not have a periodic
critical point. And whenever we take the supremum over all h £ 0 we indeed mean
taking the supremum over all h # 0 such that 0 < |h| < 0, where § > 0 is given by
Definition 3.3.

Proof of Proposition 4.3. We first examine

%(£t+hpt — Lipt).
As we have seen, the density p; can be decomposed as
pt = (pt)abs + (Pt)sal-
We also have Ly pp: € BV and
Liinpt = (Lesnpt)abs + (Letnpt)sat-
Therefore,
(Levnpe = Lepe) = (Lernpe)abs — (Lept)avs) + (Lewnpe)sat = (Lept)sal) -

Let us examine the absolutely continuous term

1

E((’ththt)abs — (L1pt)abs)-

Observe that for every ¢
(Lepe)(x) = (Lept)abs (@) + (Lept)sar ().

Differentiating with respect to =z,

((Lepr)avs) (x) = (Lipe)' (2)
= ((ctpt)/)abS(x) + ((‘Ctpt)l)sal(m)~
Then

(Ltpt)abs () =/ (Lipt) dm.
0
Similarly
(Leprn)abs () :/0 (Lixnpt) (y) dm.
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Therefore,

(Lisnpt)avs(@) — (Lept)aps(z) = /Ox(ﬁtJtht)/ - (ﬁtpt)/ dm
= /Om((‘ctJrhpt)/)abs - ((»Ctpt)/)abs dm

+ /0 (Lornpr)Ysat = (Lopr))sat dm.

We define
(101) @) = [ (e Yo = (Lapr) Y dim,
0
and
(102) Bua@) = [ (Cosnpi) ot = (Capr) at .
0
Our goal is to prove that
sup sup |—— < oo and sup sup |—— < 0.
+€[0,1] h£0 BV tejo.1]h#0| N gy
Since A, is absolutely continuous, it follows that
var(Ayp) = / |A;’h|dm.
Hence, to prove that
A p
sup sup < 00,
te[0,1] h#£0 h BV
it is enough to prove that
A/
(103) sup sup | —2 dm <oco and  sup sup|—2 < o0.
te[0,1] h#0 L1 (m) te[0,1] h#0 L1(m)

According to Eq. (101),
11 (T) = (Levnpt)aps (@) = (Lept)aps(@)-

Differentiating (L¢1npt)’, we have, for every h,

((Legnpe)Navs) () = (Legnpe)” (2).

for m-almost every z. In particular

;/,h(l/) = (Lirnpd)"(y) = (Lepd)” (v),

for m-almost every y. and

(104) :&h(x) = /Om(EtJtht)H — (Lepy)” dm.

As we have seen the Ruelle-Perron-Frobenius operator for f;yj is given by

_ _nly)
(105) (Lisnpe)(x) = ft+§y:)a: 1D forn(y)|



CLT for the modulus of continuity of averages of observables in transversal families 49

Differentiating the equation (105) with respect to x we obtain

. A ~ p (@)D frin(y)
(106)  (Lonp) @ = D e e DA

Now, differentiating the equation (106) with respect to = we obtain

P ¢ (y) o PW)D* fiin(y)
(Ceo 0= D (BT bawr Bhawirwr)

D funly) o (0)(D? i (1))
> (|th+h<y>|th+h<y>3+3|th+h<y>||th+h<y>4)'

Observe that we can rewrite (Lnp:)” as follows

' ,D2
(Liynpe)” = Liyn ( i ) — 3Lt (ptf”h)

fern(y)=2z

Je+n(y)=z

|D frrnl? (D feyn)?
_ ptDSft+h> (Pt(szt+h)2)
(10m) o (T ) + 300w (157)

We obtain a similar expression for (L:p:)”.
Substituting Eq. (107) into Eq. (104) we obtain

’ _ Tk pig — " Piél
t,h(x)*/o dfin (|th+h|2m> /0 el <|th|2m>

Ay
N —3P§D2ft+h )_ ‘ *(—3P2D2ft )
+/o deh( (D frn)? " /o el (Dfi)? "
As
* * —PtD3ft+h )_ * *(_pthft )
+/o dfwh( (D fisn)? " /o el (Dfi)? "
As
T e (3pe(D? fign)? T (3p:(D*f1)?
+/o deh( |D frin|* m) _/o @ ( |D fel* m)

Ay

Observe that A;, 1 < i < 4, satisfy the assumptions of Proposition 8.1 and the total
variation of each one of the measures that appears above has a upper bound that
depends on the constants in Assumption (V) of Definition 3.3. Therefore,

Ap
sup sup < 0
te(01]h#0 | P |pi(m)
and, consequently
Aen\ .
(108) Sup sup var = sup sup dm < oo.
t€[0,1] h£0 h tef01]h#0 | P [ pi(m)
It remains to verify that the second part of Eq. (103). Note that
A A v A A
’ t,h _ /‘ 2% / / uh(y) dy‘ dm < t,h .
h Lt h 0 h‘ Ll(m)
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Hence, by Eq. (108), Eq. (103) holds. Hence, we need to show that

By p,
sup sup < o0.
te[0,1] h#0 h BV

By Eq. (106) and Property (V) in Definition 3.3 we have
(Lernpt)sa(®)

= Hff+h(ft C))(x) _ sk(t )Hft+h (FE(0)) ‘T> 2 k(e
_;<th+h ft D fen T Dfeen(sEenp TVl ”)

pi(c) )
(th+h |th+h( =) * Dfipn(cH)|Dfipn(ct)] Hy, (o) ()
pt()D? fripn(c—)  pi(c)D? frin(c+)
(M B ) Hro @)
Since for every a € [0, 1] we have

we can write

with functions B; given by

* * ; — ’ * #
Bl(x)_/o Y <th+h|th+h|V1) /0 i (ththV1>

where
Zsk —0sk()s
o (Be) [0 ()
B = — dfr — Jtrh ’
2(7) /0 fvn (|th+h|‘3y2 dfe |D f:|3 "2
where

Z sk 5f1 C)

Let ¢ be the constant borelian functlon e [0,1] — R given by
R 1 1
Yi(y) = + :
‘W)= DRI T DAenIDer]

Then
By(x) = / dff o (rnvs) — / df (o).

where
v3 = —py(c)de.
Let ¢ be the constant borelian function [0,1] — R given by
~ o D2ft(C—) D2ft(C+)
wt(y) - 3 3
[Dfi(c=)* D fi(et)]
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then
xr - xT -
* *
Buw) == [ ditiuenn) + [ dit(G)
0 0

Here
vy = —pi(c)de.

We can apply Proposition 8.1 on each one of the pairs (B;,v;). Moreover, by
property (V) of Definition 3.3 there is a upper bound for the total variation of the
measures v;, ¢ = 1,2, 3,4, that holds for every t € [0, 1]. Hence,

sup sup |— < 00,
t€[0,1] h#0 L(m)
and consequently
(5)
sup sup var < Q.
te[0,1] h£0 h
Since
z 4 4
‘Bt,h _/’Bt,h d / ZBZ(y) Z |
h 1 h 0 = h — L' (m)’
we obtain
By p,
sup sup 0.
te[0,1] h#0 h BV
Therefore,
L ,— (L ,
sup sup (Li+npt)abs — (Ltpt)abs < 0.
t€[0,1] h#£0 h BY

It remains to examine the saltus.

(£t+hpt)sal - (Ltpt)sal

o 1 > Sk(t) _ Sk(t)
=52 (MMHﬂM(ﬁ(C)) th(ftk(c))Hft(fZ“(C))>

51
1 p(c) pi(€) _ pi(c) pt(c)
T ( <th+h<c—>| i |th+h<c+>|> e <|th<0_>| ! th<c+>|) Hf“”)'

Let us analyze S;. Notice that

—— (H —H
(fk(CD ( fern(fE(€) ft(ftk(c)))

< sk(t) si(t) >H
Dfin(fE@©))  Df(fF(c))) " Hrnliin

S11
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Note that
ul,, < 7 3 | 5t 1
11 S o Sk 2 ¢
Bv ~ |h] £ th+h(ftlc(c)) Dfi( ft fean(fE(e))

i — s |th+h(ft (C>) th(ft (C))‘
i 2= O D R DA )

=Tl & Z 0D EE w11 < K

Hence, supy, ’311‘ < 00. Therefore,
BV

(£t+hpt)sal - (‘Ctpt)sal

h
fllki_o: % (Hft+h<ff<c>> - Hft(ft’“(c))) + 511
o <(|th+h (c— |thpic<)c+>|> Hherno = (D?{E?—n i |D?;EZ)+>|> Hft@)
_ ,iliskﬂ(t) (Hft+h(ff(c)) ~ Hiygp(e) 50
5
+% (Ifoic()cﬂ N ID%EZ)M) Hy, ()
5
' % <|DfZic()c+)| N |D§iﬁ?+>|) Hy, (e -
S

We will analize only S, the term S5 is analogous.
1

13 ’ <K ‘ - ‘ <22 <K
32l < K ey ~ B <
Hence,

sup 5‘2‘ < oo and sup 5'3‘ < 00.

h+#0 BV h+#0 BV

We can write

ﬁt+h(ﬂt)h— Li(p) _ o <£t+h(/’t)h— 5t(Pt)>

=4 n(S) + Mg, <h
——

A B = - -
+h+511+52+53>.

® h
Th

Therefore

/rhdm =0 and sup sup|ry|g, < co.
te[0,1] h#£0

This finishes the proof.

BV
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9. THE FUNCTION R IS NOT LIPSCHITZ ON ANY SUBSET OF POSITIVE MEASURE

We give two interesting and simple consequences of our main result. They tell us
that, under the assumptions of our main result, the function R, is not very regular
in any subset of the parameter space with positive Lebesgue measure. This show
that there is not way to make R4 more regular using some "parameter exclusion"
strategy.

Corollary 9.1. Under the same assumptions of our main result, for every set
Q C la,b], with m(2) > 0, we have for almost every t € Q

Ry(t+h) —Ry(t)

109 lim su lo(t+h) =40
(109) ot hy/—log ] a(t+h)

and

(110) lim jnf et ) — Ro(t) 1o(t +h) = —o0,

h—0+ hy/—log |h|

where 1g denotes the indicator function of Q.

Proof. Due Propostition 3.6, it is enough to prove Corollary 9.1 for good transversal
families. We are going to prove that Eq. (109) holds for almost every ¢ € . The
proof that Eq. (110) holds for almost every ¢ € ) is similar.

If Eq. (109) fails for ¢ in a subset of {2 with positive Lebesgue measure, then
there exist Q0 C Q, with m(Q) > 0 and K, > 0 such that for every ¢ € Q we have

i sup R+ 1) — Ro()

h—0+ h+/—log|h|

Since f; is a good transversal family, without loss of generality we can assume
inf; U(t) > 0, there exists K > 0 such that

. Ry(t+ h) — Ry(t)
lim sup
h—o+ U(t)h+/—log|h|
for every ¢ € Q. Then there exists hg > 0 and a set S C € with m(S) > 0 such
that for every ¢t € S we have
Ro(t+h) —Ry(t)
U(t)h+/— log|h|

for every h satisfying 0 < h < hg. Let ty € (a,b) be a Lebesgue density point of S.
Choose § > 0 such that

lo(t +h) < K.

lo(t+h) < K

lo(t+h) < Ky +1

Dy(Ka+1)+d6< 1.
Then for every € > 0 small enough,
m(SNI,)
m(Ie)

where I, = [tg — €, tp + €]. Let Sc = SN I. It is a well-known fact that if
Se—h={t—h:teS.}

then

lim m(S. N (S, — h)) = m(Se) > 0.
h—0
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Note that for every t € S. N (S. — h), we have t,t + h € S C S C Q, then
t+h)— t
Rolt+1) = Rolt) _ o

U(thy/—loglh] — -

for every 0 < h < hg. In particular

lim sup 1 ml|tel: 1 Ro(t+h) — Ry(?) < Ky;+1
h—o+ m(le) U(t)h/—log|hl h
m(Sk)
> > .
(111) Z ) >Dn(Ka+1)4+6

On the other hand the restriction of f; to the interval I, is a transversal family,
then by Theorem 1.1 we obtain

lim 1m(t€]'£: 1 Ro(t+h) = Ry(?) §K2+1>
h—0+ m(I) W (t)h/—log |h] h
=Dy (K2 +1),
which contradicts Eq.(111). O
Proof of Corollary 1.2. Tt follows from Corollary 9.1. O
Remark 9.2. In Baladi and Smania [2][5] it is proven that for almost every ¢ € [a, b]

there exists a sequence h,, — 0 such that
Ryt + hn) = Ro(t)
hy,
is not bounded. In particular R is not a lipschitzian function on the whole interval

[a,b]. Naturally Corollaries 9.1 and 1.2 do not follow from this when  is not an
interval.

Remark 9.3. Two weeks before this work be completed, Fabian Contreras sent
us his Ph. D. Thesis [7] where he proves a result sharper than Corollary 9.1 when
Q) = [a,b] and ¢ is a C! generic observable. He proves that for almost every t € [a, b]
the limit

o Relt+h) —Ry(t)
h—0t hy/|log hloglog |log hl|
exists and it is non zero. Note again that Corollaries 9.1 and 1.2 do not seem to
follow from his result when €2 is not an interval.

(112)
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