Source: Pattern Recognition Letters. Unidade: ICMC
Subjects: INTELIGÊNCIA ARTIFICIAL, APRENDIZADO COMPUTACIONAL, MINERAÇÃO DE DADOS
ABNT
FALEIROS, Thiago de Paulo e ROSSI, Rafael Geraldeli e LOPES, Alneu de Andrade. Optimizing the class information divergence for transductive classification of texts using propagation in bipartite graphs. Pattern Recognition Letters, v. 87, p. 127-138, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.patrec.2016.04.006. Acesso em: 31 out. 2024.APA
Faleiros, T. de P., Rossi, R. G., & Lopes, A. de A. (2017). Optimizing the class information divergence for transductive classification of texts using propagation in bipartite graphs. Pattern Recognition Letters, 87, 127-138. doi:10.1016/j.patrec.2016.04.006NLM
Faleiros T de P, Rossi RG, Lopes A de A. Optimizing the class information divergence for transductive classification of texts using propagation in bipartite graphs [Internet]. Pattern Recognition Letters. 2017 ; 87 127-138.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.patrec.2016.04.006Vancouver
Faleiros T de P, Rossi RG, Lopes A de A. Optimizing the class information divergence for transductive classification of texts using propagation in bipartite graphs [Internet]. Pattern Recognition Letters. 2017 ; 87 127-138.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.patrec.2016.04.006