Filtros : "Journal of Statistical Computation and Simulation" "2019" Removido: "REGRESSÃO LOGÍSTICA" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Statistical Computation and Simulation. Unidade: ESALQ

    Assuntos: REGRESSÃO LINEAR, ÓLEOS VEGETAIS, COPAÍBA, RESINAS VEGETAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASHIMOTO, Elizabeth M et al. Zero-spiked regression models generated by gamma random variables with application in the resin oil production. Journal of Statistical Computation and Simulation, v. 89, n. 1, p. 52-70, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2018.1534116. Acesso em: 20 nov. 2025.
    • APA

      Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., Cancho, V. G., & Klauberg, C. (2019). Zero-spiked regression models generated by gamma random variables with application in the resin oil production. Journal of Statistical Computation and Simulation, 89( 1), 52-70. doi:10.1080/00949655.2018.1534116
    • NLM

      Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG, Klauberg C. Zero-spiked regression models generated by gamma random variables with application in the resin oil production [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 1): 52-70.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2018.1534116
    • Vancouver

      Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG, Klauberg C. Zero-spiked regression models generated by gamma random variables with application in the resin oil production [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 1): 52-70.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2018.1534116
  • Fonte: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Assuntos: CLUSTERS, ALGORITMOS ÚTEIS E ESPECÍFICOS, DISTRIBUIÇÕES (PROBABILIDADE)

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARAIVA, Erlandson Ferreira e PEREIRA, C. A. B e SUZUKI, Adriano Kamimura. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling. Journal of Statistical Computation and Simulation, v. 89, n. 15, p. 2848-2870, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2019.1643345. Acesso em: 20 nov. 2025.
    • APA

      Saraiva, E. F., Pereira, C. A. B., & Suzuki, A. K. (2019). A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling. Journal of Statistical Computation and Simulation, 89( 15), 2848-2870. doi:10.1080/00949655.2019.1643345
    • NLM

      Saraiva EF, Pereira CAB, Suzuki AK. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 15): 2848-2870.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2019.1643345
    • Vancouver

      Saraiva EF, Pereira CAB, Suzuki AK. A data-driven selection of the number of clusters in the Dirichlet allocation model via Bayesian mixture modelling [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 15): 2848-2870.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2019.1643345
  • Fonte: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Assuntos: INFERÊNCIA PARAMÉTRICA, INFERÊNCIA BAYESIANA, MÉTODO DE MONTE CARLO, VEROSSIMILHANÇA, TESTES DE HIPÓTESES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAVALETA, Katherine Elizabeth Coaguila e CANCHO, Vicente Garibay e LEMONTE, Artur José. Likelihood-based tests in zero-inflated power series models. Journal of Statistical Computation and Simulation, v. 89, n. 3, p. 443-460, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2018.1554660. Acesso em: 20 nov. 2025.
    • APA

      Zavaleta, K. E. C., Cancho, V. G., & Lemonte, A. J. (2019). Likelihood-based tests in zero-inflated power series models. Journal of Statistical Computation and Simulation, 89( 3), 443-460. doi:10.1080/00949655.2018.1554660
    • NLM

      Zavaleta KEC, Cancho VG, Lemonte AJ. Likelihood-based tests in zero-inflated power series models [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 3): 443-460.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2018.1554660
    • Vancouver

      Zavaleta KEC, Cancho VG, Lemonte AJ. Likelihood-based tests in zero-inflated power series models [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 3): 443-460.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2018.1554660
  • Fonte: Journal of Statistical Computation and Simulation. Unidades: IME, EP

    Assuntos: ANALISE DE SÉRIES TEMPORAIS, ANALISE DE REGRESSÃO E DE CORRELAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESPARZA ALBARRACIN, Orlando Yesid e ALENCAR, Airlane Pereira e HO, Linda Lee. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model. Journal of Statistical Computation and Simulation, v. 89, n. 10, p. 1819-1840, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2019.1599892. Acesso em: 20 nov. 2025.
    • APA

      Esparza Albarracin, O. Y., Alencar, A. P., & Ho, L. L. (2019). Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model. Journal of Statistical Computation and Simulation, 89( 10), 1819-1840. doi:10.1080/00949655.2019.1599892
    • NLM

      Esparza Albarracin OY, Alencar AP, Ho LL. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 10): 1819-1840.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2019.1599892
    • Vancouver

      Esparza Albarracin OY, Alencar AP, Ho LL. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 10): 1819-1840.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2019.1599892
  • Fonte: Journal of Statistical Computation and Simulation. Unidades: ESALQ, ICMC

    Assuntos: INFERÊNCIA ESTATÍSTICA, ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASHIMOTO, Elizabeth Mie et al. Zero-spiked regression models generated by gamma random variables with application in the resin oil production. Journal of Statistical Computation and Simulation, v. 89, n. 1, p. 52-70, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2018.1534116. Acesso em: 20 nov. 2025.
    • APA

      Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., Cancho, V. G., & Klauberg, C. (2019). Zero-spiked regression models generated by gamma random variables with application in the resin oil production. Journal of Statistical Computation and Simulation, 89( 1), 52-70. doi:10.1080/00949655.2018.1534116
    • NLM

      Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG, Klauberg C. Zero-spiked regression models generated by gamma random variables with application in the resin oil production [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 1): 52-70.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2018.1534116
    • Vancouver

      Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG, Klauberg C. Zero-spiked regression models generated by gamma random variables with application in the resin oil production [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 1): 52-70.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2018.1534116
  • Fonte: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Assuntos: DADOS DE CONTAGEM, TESTES DE HIPÓTESES, DISTRIBUIÇÃO DE POISSON, VEROSSIMILHANÇA, MÉTODO DE MONTE CARLO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Daiane de Souza e CANCHO, Vicente Garibay e RODRIGUES, Josemar. Hypothesis testing for the dispersion parameter of the hyper-Poisson regression model. Journal of Statistical Computation and Simulation, v. 89, n. 5, p. 763-775, 2019Tradução . . Disponível em: https://doi.org/10.1080/00949655.2019.1572144. Acesso em: 20 nov. 2025.
    • APA

      Santos, D. de S., Cancho, V. G., & Rodrigues, J. (2019). Hypothesis testing for the dispersion parameter of the hyper-Poisson regression model. Journal of Statistical Computation and Simulation, 89( 5), 763-775. doi:10.1080/00949655.2019.1572144
    • NLM

      Santos D de S, Cancho VG, Rodrigues J. Hypothesis testing for the dispersion parameter of the hyper-Poisson regression model [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 5): 763-775.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2019.1572144
    • Vancouver

      Santos D de S, Cancho VG, Rodrigues J. Hypothesis testing for the dispersion parameter of the hyper-Poisson regression model [Internet]. Journal of Statistical Computation and Simulation. 2019 ; 89( 5): 763-775.[citado 2025 nov. 20 ] Available from: https://doi.org/10.1080/00949655.2019.1572144

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025