Filtros : "DINÂMICA TOPOLÓGICA" "Journal of Differential Equations" Removido: "PROCESSOS ESTACIONÁRIOS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 28 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e GADOTTI, Marta Cilene. Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, v. 303, p. 123-155, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.013. Acesso em: 28 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Gadotti, M. C. (2021). Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, 303, 123-155. doi:10.1016/j.jde.2021.09.013
    • NLM

      Bonotto E de M, Federson M, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.09.013
    • Vancouver

      Bonotto E de M, Federson M, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2021.09.013
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONTI, M et al. Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, v. 264, n. 7, p. 4235-4259, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2017.12.010. Acesso em: 28 nov. 2025.
    • APA

      Conti, M., Ma, T. F., Marchini, E. M., & Huertas, P. N. S. (2018). Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, 264( 7), 4235-4259. doi:10.1016/j.jde.2017.12.010
    • NLM

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
    • Vancouver

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, K. P. Conley index and tubular neighborhoods II. Journal of Differential Equations, v. 260, n. 5, p. 4016-4050, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2015.11.001. Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2016). Conley index and tubular neighborhoods II. Journal of Differential Equations, 260( 5), 4016-4050. doi:10.1016/j.jde.2015.11.001
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and tubular neighborhoods II [Internet]. Journal of Differential Equations. 2016 ; 260( 5): 4016-4050.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2015.11.001
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and tubular neighborhoods II [Internet]. Journal of Differential Equations. 2016 ; 260( 5): 4016-4050.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2015.11.001
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, v. 244, n. 9, p. 2334-2349, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2008.02.007. Acesso em: 28 nov. 2025.
    • APA

      Bonotto, E. de M., & Federson, M. (2008). Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, 244( 9), 2334-2349. doi:10.1016/j.jde.2008.02.007
    • NLM

      Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007
    • Vancouver

      Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e TABOAS, Placido Zoega. Topological dynamics of retarded functional differential equations. Journal of Differential Equations, v. 195, n. 2, p. 313-331, 2003Tradução . . Disponível em: https://doi.org/10.1016/S0022-0396(03)00061-5. Acesso em: 28 nov. 2025.
    • APA

      Federson, M., & Taboas, P. Z. (2003). Topological dynamics of retarded functional differential equations. Journal of Differential Equations, 195( 2), 313-331. doi:10.1016/S0022-0396(03)00061-5
    • NLM

      Federson M, Taboas PZ. Topological dynamics of retarded functional differential equations [Internet]. Journal of Differential Equations. 2003 ; 195( 2): 313-331.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/S0022-0396(03)00061-5
    • Vancouver

      Federson M, Taboas PZ. Topological dynamics of retarded functional differential equations [Internet]. Journal of Differential Equations. 2003 ; 195( 2): 313-331.[citado 2025 nov. 28 ] Available from: https://doi.org/10.1016/S0022-0396(03)00061-5

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025