Filtros : "Mathematical Programming" "PROGRAMAÇÃO NÃO LINEAR" Limpar

Filtros



Refine with date range


  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR, PESQUISA OPERACIONAL

    Disponível em 2026-06-17Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. A minimal face constant rank constraint qualification for reducible conic programming. Mathematical Programming, p. 1-27, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10107-025-02237-w. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., & Ramírez, H. (2025). A minimal face constant rank constraint qualification for reducible conic programming. Mathematical Programming, 1-27. doi:10.1007/s10107-025-02237-w
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H. A minimal face constant rank constraint qualification for reducible conic programming [Internet]. Mathematical Programming. 2025 ; 1-27.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-025-02237-w
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H. A minimal face constant rank constraint qualification for reducible conic programming [Internet]. Mathematical Programming. 2025 ; 1-27.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-025-02237-w
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Weak notions of nondegeneracy in nonlinear semidefinite programming. Mathematical Programming, v. 205, n. 1-2, p. 1-32, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01970-4. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L. M., & Ramírez, H. (2024). Weak notions of nondegeneracy in nonlinear semidefinite programming. Mathematical Programming, 205( 1-2), 1-32. doi:10.1007/s10107-023-01970-4
    • NLM

      Andreani R, Haeser G, Mito LM, Ramírez H. Weak notions of nondegeneracy in nonlinear semidefinite programming [Internet]. Mathematical Programming. 2024 ; 205( 1-2): 1-32.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01970-4
    • Vancouver

      Andreani R, Haeser G, Mito LM, Ramírez H. Weak notions of nondegeneracy in nonlinear semidefinite programming [Internet]. Mathematical Programming. 2024 ; 205( 1-2): 1-32.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01970-4
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, v. 202, p. 473-513, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01942-8. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, H., & Silveira, T. P. da. (2023). First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, 202, 473-513. doi:10.1007/s10107-023-01942-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ; 202 473-513.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ; 202 473-513.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO CONVEXA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e HINDER, Oliver e YE, Yinyu. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, v. 186, n. 1-2, p. 257-288, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10107-019-01454-4. Acesso em: 11 nov. 2025.
    • APA

      Haeser, G., Hinder, O., & Ye, Y. (2021). On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, 186( 1-2), 257-288. doi:10.1007/s10107-019-01454-4
    • NLM

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
    • Vancouver

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto e HAESER, Gabriel e VIANA, Daiana S. Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, v. 180, n. 1-2, p. 203-235, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1354-5. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., & Viana, D. S. (2020). Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, 180( 1-2), 203-235. doi:10.1007/s10107-018-1354-5
    • NLM

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
    • Vancouver

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 11 nov. 2025.
    • APA

      Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4
    • NLM

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
    • Vancouver

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
  • Source: Mathematical Programming. Unidade: IME

    Subjects: MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASCARENHAS, Walter Figueiredo. The divergence of the BFGS and Gauss Newton methods. Mathematical Programming, v. 147, n. 1-2, p. 253-276, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10107-013-0720-6. Acesso em: 11 nov. 2025.
    • APA

      Mascarenhas, W. F. (2014). The divergence of the BFGS and Gauss Newton methods. Mathematical Programming, 147( 1-2), 253-276. doi:10.1007/s10107-013-0720-6
    • NLM

      Mascarenhas WF. The divergence of the BFGS and Gauss Newton methods [Internet]. Mathematical Programming. 2014 ; 147( 1-2): 253-276.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-013-0720-6
    • Vancouver

      Mascarenhas WF. The divergence of the BFGS and Gauss Newton methods [Internet]. Mathematical Programming. 2014 ; 147( 1-2): 253-276.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-013-0720-6
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. A relaxed constant positive linear dependence constraint qualification and applications. Mathematical Programming, v. 135, n. 1-2, p. 255-273, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10107-011-0456-0. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., & Silva, P. J. S. (2011). A relaxed constant positive linear dependence constraint qualification and applications. Mathematical Programming, 135( 1-2), 255-273. doi:10.1007/s10107-011-0456-0
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Silva PJS. A relaxed constant positive linear dependence constraint qualification and applications [Internet]. Mathematical Programming. 2011 ; 135( 1-2): 255-273.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-011-0456-0
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Silva PJS. A relaxed constant positive linear dependence constraint qualification and applications [Internet]. Mathematical Programming. 2011 ; 135( 1-2): 255-273.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-011-0456-0
  • Source: Mathematical Programming. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming, v. 111, n. 1-2, p. 5-32, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10107-006-0077-1. Acesso em: 11 nov. 2025.
    • APA

      Andreani, R., Birgin, E. J. G., Martínez, J. M., & Schuverdt, M. L. (2008). Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming, 111( 1-2), 5-32. doi:10.1007/s10107-006-0077-1
    • NLM

      Andreani R, Birgin EJG, Martínez JM, Schuverdt ML. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification [Internet]. Mathematical Programming. 2008 ; 111( 1-2): 5-32.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-006-0077-1
    • Vancouver

      Andreani R, Birgin EJG, Martínez JM, Schuverdt ML. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification [Internet]. Mathematical Programming. 2008 ; 111( 1-2): 5-32.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1007/s10107-006-0077-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025