Filtros : "Journal of Mathematical Analysis and Applications" "SISTEMAS DINÂMICOS" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Chao et al. On the phenomenon of topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, v. 546, n. artigo 129229, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129229. Acesso em: 16 nov. 2025.
    • APA

      Liang, C., Ren, X., Sun, W., & Vargas, E. (2025). On the phenomenon of topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, 546( artigo 129229), 1-13. doi:10.1016/j.jmaa.2025.129229
    • NLM

      Liang C, Ren X, Sun W, Vargas E. On the phenomenon of topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 546( artigo 129229): 1-13.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129229
    • Vancouver

      Liang C, Ren X, Sun W, Vargas E. On the phenomenon of topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 546( artigo 129229): 1-13.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129229
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, SINGULARIDADES, INVARIANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-14, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129309. Acesso em: 16 nov. 2025.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2025). Dulac functions and monodromic singularities. Journal of Mathematical Analysis and Applications, 547( 2), 1-14. doi:10.1016/j.jmaa.2025.129309
    • NLM

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
    • Vancouver

      García IA, Giné J, Rodero AL. Dulac functions and monodromic singularities [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-14.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129309
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. Topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, v. 527, n. artigo 127445, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127445. Acesso em: 16 nov. 2025.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2023). Topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, 527( artigo 127445), 1-14. doi:10.1016/j.jmaa.2023.127445
    • NLM

      Saghin R, Sun W, Vargas E. Topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 527( artigo 127445): 1-14.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127445
    • Vancouver

      Saghin R, Sun W, Vargas E. Topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 527( artigo 127445): 1-14.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127445
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 16 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Topological conjugation and asymptotic stability in impulsive semidynamical systems. Journal of Mathematical Analysis and Applications, v. 326, n. 2, p. 869-881, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2006.03.042. Acesso em: 16 nov. 2025.
    • APA

      Bonotto, E. de M., & Federson, M. (2007). Topological conjugation and asymptotic stability in impulsive semidynamical systems. Journal of Mathematical Analysis and Applications, 326( 2), 869-881. doi:10.1016/j.jmaa.2006.03.042
    • NLM

      Bonotto E de M, Federson M. Topological conjugation and asymptotic stability in impulsive semidynamical systems [Internet]. Journal of Mathematical Analysis and Applications. 2007 ; 326( 2): 869-881.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2006.03.042
    • Vancouver

      Bonotto E de M, Federson M. Topological conjugation and asymptotic stability in impulsive semidynamical systems [Internet]. Journal of Mathematical Analysis and Applications. 2007 ; 326( 2): 869-881.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2006.03.042

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025