The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations (2021)
- Authors:
- USP affiliated authors: CARVALHO, ALEXANDRE NOLASCO DE - ICMC ; SOUSA, ALEXANDRE DO NASCIMENTO OLIVEIRA - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jmaa.2021.125134
- Subjects: SISTEMAS DINÂMICOS; EQUAÇÕES DIFERENCIAIS NÃO LINEARES; EQUAÇÕES DA ONDA
- Keywords: Nonautonomous random dynamical systems; Nonautonomous random differential equations; Exponential dichotomies; Persistence of hyperbolic equilibria; Bounded noise; Damped wave equation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Mathematical Analysis and Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 500, n. 2, p. 1-27, Aug. 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 02 jan. 2026. -
APA
Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134 -
NLM
Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134 -
Vancouver
Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2026 jan. 02 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134 - Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations
- Continuity and topological structural stability for nonautonomous random attractors
- Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções
- Robustness of nonuniform and random exponential dichotomies with applications to differential equations
- Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics
- Structure of attractors for skew product semiflows
- Continuity of attractors for a semilinear wave equation with variable coefficients
- Patterns in parabolic problems with nonlinear boundary conditions
- Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds
- Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
Informações sobre o DOI: 10.1016/j.jmaa.2021.125134 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3023569_postprint.pdf | Direct link | ||
| 3023569.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
