Filtros : "Differential and Integral Equations" "Produção científica" Limpar

Filtros



Limitar por data


  • Fonte: Differential and Integral Equations. Unidade: FFCLRP

    Assuntos: MATEMÁTICA DA COMPUTAÇÃO, MASSA, INVARIANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASLAN, Halit Sevki e EBERT, Marcelo Rempel e REISSIG, Michael. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, v. 36, n. 5/6, p. 453-490, 2023Tradução . . Disponível em: https://doi.org/10.57262/die036-0506-453. Acesso em: 18 nov. 2024.
    • APA

      Aslan, H. S., Ebert, M. R., & Reissig, M. (2023). Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, 36( 5/6), 453-490. doi:10.57262/die036-0506-453
    • NLM

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 18 ] Available from: https://doi.org/10.57262/die036-0506-453
    • Vancouver

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 18 ] Available from: https://doi.org/10.57262/die036-0506-453
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, BIOMATEMÁTICA, SISTEMAS DE CONTROLE

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FERREIRA, J. Costa e FEDERSON, Marcia. Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory. Differential and Integral Equations, v. 31, n. 7-8, p. 519-546, 2018Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1526004029. Acesso em: 18 nov. 2024.
    • APA

      Bonotto, E. de M., Ferreira, J. C., & Federson, M. (2018). Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory. Differential and Integral Equations, 31( 7-8), 519-546. Recuperado de https://projecteuclid.org/euclid.die/1526004029
    • NLM

      Bonotto E de M, Ferreira JC, Federson M. Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory [Internet]. Differential and Integral Equations. 2018 ; 31( 7-8): 519-546.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1526004029
    • Vancouver

      Bonotto E de M, Ferreira JC, Federson M. Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory [Internet]. Differential and Integral Equations. 2018 ; 31( 7-8): 519-546.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1526004029
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assuntos: ATRATORES, TOPOLOGIA DINÂMICA, EQUAÇÕES DA ONDA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e SOUZA, Thales Maier. Pullback dynamics of non-autonomous wave equations with acoustic boundary condition. Differential and Integral Equations, v. 30, n. 5-6, p. 443-462, 2017Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1489802421. Acesso em: 18 nov. 2024.
    • APA

      Ma, T. F., & Souza, T. M. (2017). Pullback dynamics of non-autonomous wave equations with acoustic boundary condition. Differential and Integral Equations, 30( 5-6), 443-462. Recuperado de https://projecteuclid.org/euclid.die/1489802421
    • NLM

      Ma TF, Souza TM. Pullback dynamics of non-autonomous wave equations with acoustic boundary condition [Internet]. Differential and Integral Equations. 2017 ; 30( 5-6): 443-462.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1489802421
    • Vancouver

      Ma TF, Souza TM. Pullback dynamics of non-autonomous wave equations with acoustic boundary condition [Internet]. Differential and Integral Equations. 2017 ; 30( 5-6): 443-462.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1489802421
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo e LORCA, Sebastián e MASSA, Eugenio Tommaso. Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros. Differential and Integral Equations, v. 30, n. 1-2, p. 145-159, 2017Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1484881224. Acesso em: 18 nov. 2024.
    • APA

      Iturriaga, L., Lorca, S., & Massa, E. T. (2017). Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros. Differential and Integral Equations, 30( 1-2), 145-159. Recuperado de https://projecteuclid.org/euclid.die/1484881224
    • NLM

      Iturriaga L, Lorca S, Massa ET. Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros [Internet]. Differential and Integral Equations. 2017 ; 30( 1-2): 145-159.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1484881224
    • Vancouver

      Iturriaga L, Lorca S, Massa ET. Multiple positive solutions for the m-Laplacian and a nonlinearity with many zeros [Internet]. Differential and Integral Equations. 2017 ; 30( 1-2): 145-159.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1484881224
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, TEORIA DE SISTEMAS E CONTROLE

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso e ROSSATO, Rafael Antonio. Three solutions for an elliptic system near resonance with the principal eigenvalue. Differential and Integral Equations, v. 30, n. 3-4, p. 207-230, 2017Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1487386823. Acesso em: 18 nov. 2024.
    • APA

      Massa, E. T., & Rossato, R. A. (2017). Three solutions for an elliptic system near resonance with the principal eigenvalue. Differential and Integral Equations, 30( 3-4), 207-230. Recuperado de https://projecteuclid.org/euclid.die/1487386823
    • NLM

      Massa ET, Rossato RA. Three solutions for an elliptic system near resonance with the principal eigenvalue [Internet]. Differential and Integral Equations. 2017 ; 30( 3-4): 207-230.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1487386823
    • Vancouver

      Massa ET, Rossato RA. Three solutions for an elliptic system near resonance with the principal eigenvalue [Internet]. Differential and Integral Equations. 2017 ; 30( 3-4): 207-230.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1487386823
  • Fonte: Differential and Integral Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES PSEUDODIFERENCIAIS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin G e SICILIANO, Gaetano. Positive semiclassical states for a fractional Schrödinger-Poisson system. Differential and Integral Equations, v. 30, n. 3-4, p. 231-258, 2017Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1487386824. Acesso em: 18 nov. 2024.
    • APA

      Murcia, E. G., & Siciliano, G. (2017). Positive semiclassical states for a fractional Schrödinger-Poisson system. Differential and Integral Equations, 30( 3-4), 231-258. Recuperado de https://projecteuclid.org/euclid.die/1487386824
    • NLM

      Murcia EG, Siciliano G. Positive semiclassical states for a fractional Schrödinger-Poisson system [Internet]. Differential and Integral Equations. 2017 ; 30( 3-4): 231-258.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1487386824
    • Vancouver

      Murcia EG, Siciliano G. Positive semiclassical states for a fractional Schrödinger-Poisson system [Internet]. Differential and Integral Equations. 2017 ; 30( 3-4): 231-258.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1487386824
  • Fonte: Differential and Integral Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, MECÂNICA DOS FLUÍDOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e NATALI, Fábio. On the instability of periodic waves for dispersive equations. Differential and Integral Equations, v. 29, n. 9/10, p. 837-874, 2016Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.die/1465912606. Acesso em: 18 nov. 2024.
    • APA

      Pava, J. A., & Natali, F. (2016). On the instability of periodic waves for dispersive equations. Differential and Integral Equations, 29( 9/10), 837-874. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.die/1465912606
    • NLM

      Pava JA, Natali F. On the instability of periodic waves for dispersive equations [Internet]. Differential and Integral Equations. 2016 ; 29( 9/10): 837-874.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.die/1465912606
    • Vancouver

      Pava JA, Natali F. On the instability of periodic waves for dispersive equations [Internet]. Differential and Integral Equations. 2016 ; 29( 9/10): 837-874.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.die/1465912606
  • Fonte: Differential and Integral Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, PROBLEMA DE CAUCHY

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e FERREIRA, Lucas Catão de Freitas. On the Schrödinger equation with singular potentials. Differential and Integral Equations, v. 27, n. 7/8, p. 767-800, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395752. Acesso em: 18 nov. 2024.
    • APA

      Pava, J. A., & Ferreira, L. C. de F. (2014). On the Schrödinger equation with singular potentials. Differential and Integral Equations, 27( 7/8), 767-800. Recuperado de http://projecteuclid.org/euclid.die/1399395752
    • NLM

      Pava JA, Ferreira LC de F. On the Schrödinger equation with singular potentials [Internet]. Differential and Integral Equations. 2014 ; 27( 7/8): 767-800.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1399395752
    • Vancouver

      Pava JA, Ferreira LC de F. On the Schrödinger equation with singular potentials [Internet]. Differential and Integral Equations. 2014 ; 27( 7/8): 767-800.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1399395752
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, v. 27, n. 7-8, p. 721-742, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395750. Acesso em: 18 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Federson, M. (2014). On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, 27( 7-8), 721-742. Recuperado de http://projecteuclid.org/euclid.die/1399395750
    • NLM

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1399395750
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1399395750
  • Fonte: Differential and Integral Equations. Unidades: ICMC, FFCLRP

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e MESQUITA, J. G. Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differential and Integral Equations, v. no/dez. 2013, n. 11-12, p. 1287-1320, 2013Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1378327427. Acesso em: 18 nov. 2024.
    • APA

      Federson, M., & Mesquita, J. G. (2013). Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differential and Integral Equations, no/dez. 2013( 11-12), 1287-1320. Recuperado de http://projecteuclid.org/euclid.die/1378327427
    • NLM

      Federson M, Mesquita JG. Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations [Internet]. Differential and Integral Equations. 2013 ; no/dez. 2013( 11-12): 1287-1320.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1378327427
    • Vancouver

      Federson M, Mesquita JG. Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations [Internet]. Differential and Integral Equations. 2013 ; no/dez. 2013( 11-12): 1287-1320.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1378327427
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e FREITAS, Luciana Roze de e SOARES, Sérgio Henrique Monari. Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth. Differential and Integral Equations, v. no/dez. 2011, n. 11-12, p. 1047-1062, 2011Tradução . . Acesso em: 18 nov. 2024.
    • APA

      Alves, C. O., Freitas, L. R. de, & Soares, S. H. M. (2011). Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth. Differential and Integral Equations, no/dez. 2011( 11-12), 1047-1062.
    • NLM

      Alves CO, Freitas LR de, Soares SHM. Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth. Differential and Integral Equations. 2011 ; no/dez. 2011( 11-12): 1047-1062.[citado 2024 nov. 18 ]
    • Vancouver

      Alves CO, Freitas LR de, Soares SHM. Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth. Differential and Integral Equations. 2011 ; no/dez. 2011( 11-12): 1047-1062.[citado 2024 nov. 18 ]
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ANÁLISE HARMÔNICA, OPERADORES LINEARES

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAGANA, Toka e HENRIQUEZ, Hernán e MORALES, Eduardo Alex Hernandez. Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, v. 21, n. 5-6, p. 575-600, 2008Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1356038633. Acesso em: 18 nov. 2024.
    • APA

      Diagana, T., Henriquez, H., & Morales, E. A. H. (2008). Asymptotically almost periodic solutions to some classes of second-order functional differential equations. Differential and Integral Equations, 21( 5-6), 575-600. Recuperado de https://projecteuclid.org/euclid.die/1356038633
    • NLM

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1356038633
    • Vancouver

      Diagana T, Henriquez H, Morales EAH. Asymptotically almost periodic solutions to some classes of second-order functional differential equations [Internet]. Differential and Integral Equations. 2008 ; 21( 5-6): 575-600.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1356038633
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES IMPULSIVAS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e SCHWABIK, Stefan. Generalized ODE approach to impulsive retarded functional differential equations. Differential and Integral Equations, v. 19, n. 11, p. 1201–1234, 2006Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1356050300. Acesso em: 18 nov. 2024.
    • APA

      Federson, M., & Schwabik, S. (2006). Generalized ODE approach to impulsive retarded functional differential equations. Differential and Integral Equations, 19( 11), 1201–1234. Recuperado de https://projecteuclid.org/euclid.die/1356050300
    • NLM

      Federson M, Schwabik S. Generalized ODE approach to impulsive retarded functional differential equations [Internet]. Differential and Integral Equations. 2006 ; 19( 11): 1201–1234.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1356050300
    • Vancouver

      Federson M, Schwabik S. Generalized ODE approach to impulsive retarded functional differential equations [Internet]. Differential and Integral Equations. 2006 ; 19( 11): 1201–1234.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1356050300
  • Fonte: Differential and Integral Equations. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Luiz Antonio Vieira de e COOKE, Kenneth L. A nonlinear equation with piecewise continuous argument. Differential and Integral Equations, v. 1, n. 3, p. 359-367, 1988Tradução . . Acesso em: 18 nov. 2024.
    • APA

      Carvalho, L. A. V. de, & Cooke, K. L. (1988). A nonlinear equation with piecewise continuous argument. Differential and Integral Equations, 1( 3), 359-367.
    • NLM

      Carvalho LAV de, Cooke KL. A nonlinear equation with piecewise continuous argument. Differential and Integral Equations. 1988 ; 1( 3): 359-367.[citado 2024 nov. 18 ]
    • Vancouver

      Carvalho LAV de, Cooke KL. A nonlinear equation with piecewise continuous argument. Differential and Integral Equations. 1988 ; 1( 3): 359-367.[citado 2024 nov. 18 ]

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024