A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
KAGERER, Philipp e MORELHÃO, Sergio L. Two-dimensional ferromagnetic extension of a topological insulator. Physical Review Research, v. 5, n. 2, 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevResearch.5.L022019. Acesso em: 04 nov. 2025.
APA
Kagerer, P., & Morelhão, S. L. (2023). Two-dimensional ferromagnetic extension of a topological insulator. Physical Review Research, 5( 2). doi:10.1103/PhysRevResearch.5.L022019
NLM
Kagerer P, Morelhão SL. Two-dimensional ferromagnetic extension of a topological insulator [Internet]. Physical Review Research. 2023 ; 5( 2):[citado 2025 nov. 04 ] Available from: https://doi.org/10.1103/PhysRevResearch.5.L022019
Vancouver
Kagerer P, Morelhão SL. Two-dimensional ferromagnetic extension of a topological insulator [Internet]. Physical Review Research. 2023 ; 5( 2):[citado 2025 nov. 04 ] Available from: https://doi.org/10.1103/PhysRevResearch.5.L022019
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HIRAYAMA, Renan Nobuyuki et al. Cumulants of conserved charges in hydrodynamic simulations. Physical Review C, v. 107, n. 2, p. 10 , 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevC.107.024910. Acesso em: 04 nov. 2025.
APA
Hirayama, R. N., Grassi, F. M. B. S., Serenone, W. M., & Ollitrault, J. -Y. (2023). Cumulants of conserved charges in hydrodynamic simulations. Physical Review C, 107( 2), 10 . doi:10.1103/PhysRevC.107.024910
NLM
Hirayama RN, Grassi FMBS, Serenone WM, Ollitrault J-Y. Cumulants of conserved charges in hydrodynamic simulations [Internet]. Physical Review C. 2023 ; 107( 2): 10 .[citado 2025 nov. 04 ] Available from: https://doi.org/10.1103/PhysRevC.107.024910
Vancouver
Hirayama RN, Grassi FMBS, Serenone WM, Ollitrault J-Y. Cumulants of conserved charges in hydrodynamic simulations [Internet]. Physical Review C. 2023 ; 107( 2): 10 .[citado 2025 nov. 04 ] Available from: https://doi.org/10.1103/PhysRevC.107.024910
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
DOUNGMO, Giscard et al. How do layered double hydroxides evolve?: First in situ insights into their synthesis processes. RSC Advances, v. 12, n. 52, p. 33469-33478, 2022Tradução . . Disponível em: https://doi.org/10.1039/D2RA05269E. Acesso em: 04 nov. 2025.
APA
Doungmo, G., Morais, A., Mustafa, D., kamgaing, T., Njanja, E., Etter, M., et al. (2022). How do layered double hydroxides evolve?: First in situ insights into their synthesis processes. RSC Advances, 12( 52), 33469-33478. doi:10.1039/D2RA05269E
NLM
Doungmo G, Morais A, Mustafa D, kamgaing T, Njanja E, Etter M, Tonle IK, Terraschke H. How do layered double hydroxides evolve?: First in situ insights into their synthesis processes [Internet]. RSC Advances. 2022 ; 12( 52): 33469-33478.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1039/D2RA05269E
Vancouver
Doungmo G, Morais A, Mustafa D, kamgaing T, Njanja E, Etter M, Tonle IK, Terraschke H. How do layered double hydroxides evolve?: First in situ insights into their synthesis processes [Internet]. RSC Advances. 2022 ; 12( 52): 33469-33478.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1039/D2RA05269E
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PENACCHIO, Rafaela Felix da Silva et al. Statistical modeling of epitaxial thin films of an intrinsic antiferromagnetic topological insulator. Thin Solid Films, v. 750, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.tsf.2022.139183. Acesso em: 04 nov. 2025.
APA
Penacchio, R. F. da S., Fornari, C. I., Camillo, Y. G., Kagerer, P., Buchberger, S., Kamp, M., et al. (2022). Statistical modeling of epitaxial thin films of an intrinsic antiferromagnetic topological insulator. Thin Solid Films, 750. doi:10.1016/j.tsf.2022.139183
NLM
Penacchio RF da S, Fornari CI, Camillo YG, Kagerer P, Buchberger S, Kamp M, Bentmann H, Reinert F, Morelhão SL. Statistical modeling of epitaxial thin films of an intrinsic antiferromagnetic topological insulator [Internet]. Thin Solid Films. 2022 ; 750[citado 2025 nov. 04 ] Available from: https://doi.org/10.1016/j.tsf.2022.139183
Vancouver
Penacchio RF da S, Fornari CI, Camillo YG, Kagerer P, Buchberger S, Kamp M, Bentmann H, Reinert F, Morelhão SL. Statistical modeling of epitaxial thin films of an intrinsic antiferromagnetic topological insulator [Internet]. Thin Solid Films. 2022 ; 750[citado 2025 nov. 04 ] Available from: https://doi.org/10.1016/j.tsf.2022.139183
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HEROLD, Laura e FERREIRA, Elisa Gouvêa Mauricio e KOMATSU, Eiichiro. New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood. Astrophysical Journal Letters, v. 929, n. 1, 2022Tradução . . Disponível em: https://doi.org/10.3847/2041-8213/ac63a3. Acesso em: 04 nov. 2025.
APA
Herold, L., Ferreira, E. G. M., & Komatsu, E. (2022). New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood. Astrophysical Journal Letters, 929( 1). doi:10.3847/2041-8213/ac63a3
NLM
Herold L, Ferreira EGM, Komatsu E. New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood [Internet]. Astrophysical Journal Letters. 2022 ; 929( 1):[citado 2025 nov. 04 ] Available from: https://doi.org/10.3847/2041-8213/ac63a3
Vancouver
Herold L, Ferreira EGM, Komatsu E. New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood [Internet]. Astrophysical Journal Letters. 2022 ; 929( 1):[citado 2025 nov. 04 ] Available from: https://doi.org/10.3847/2041-8213/ac63a3
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ABREU, P. et al. Arrival directions of cosmic rays above 32 EeV from phase one of the Pierre Auger Observatory. Astrophysical Journal, v. 935, n. 2, p. 170-1-170-24, 2022Tradução . . Disponível em: https://doi.org/10.3847/1538-4357/ac7d4e. Acesso em: 04 nov. 2025.
APA
Abreu, P., Catalani, F., Peixoto, C. J. T., Souza, V. de, Oliveira, C. de, Armand, J. P., & Santos, E. M. (2022). Arrival directions of cosmic rays above 32 EeV from phase one of the Pierre Auger Observatory. Astrophysical Journal, 935( 2), 170-1-170-24. doi:10.3847/1538-4357/ac7d4e
NLM
Abreu P, Catalani F, Peixoto CJT, Souza V de, Oliveira C de, Armand JP, Santos EM. Arrival directions of cosmic rays above 32 EeV from phase one of the Pierre Auger Observatory [Internet]. Astrophysical Journal. 2022 ; 935( 2): 170-1-170-24.[citado 2025 nov. 04 ] Available from: https://doi.org/10.3847/1538-4357/ac7d4e
Vancouver
Abreu P, Catalani F, Peixoto CJT, Souza V de, Oliveira C de, Armand JP, Santos EM. Arrival directions of cosmic rays above 32 EeV from phase one of the Pierre Auger Observatory [Internet]. Astrophysical Journal. 2022 ; 935( 2): 170-1-170-24.[citado 2025 nov. 04 ] Available from: https://doi.org/10.3847/1538-4357/ac7d4e
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PACAKOVA, Barbara et al. Large bandgap insulating superior clay nanosheets. MRS Bulletin, v. 47, p. 06 , 2022Tradução . . Disponível em: https://doi.org/10.1557/s43577-022-00349-8. Acesso em: 04 nov. 2025.
APA
Pacakova, B., Vullum, P. E., Kirch, A., Breu, J., Miranda, C. R., & Fossum, J. O. (2022). Large bandgap insulating superior clay nanosheets. MRS Bulletin, 47, 06 . doi:10.1557/s43577-022-00349-8
NLM
Pacakova B, Vullum PE, Kirch A, Breu J, Miranda CR, Fossum JO. Large bandgap insulating superior clay nanosheets [Internet]. MRS Bulletin. 2022 ; 47 06 .[citado 2025 nov. 04 ] Available from: https://doi.org/10.1557/s43577-022-00349-8
Vancouver
Pacakova B, Vullum PE, Kirch A, Breu J, Miranda CR, Fossum JO. Large bandgap insulating superior clay nanosheets [Internet]. MRS Bulletin. 2022 ; 47 06 .[citado 2025 nov. 04 ] Available from: https://doi.org/10.1557/s43577-022-00349-8
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MEDEIROS, Everton et al. The impact of chaotic saddles on the synchronization of complex networks of discrete-time units. Journal of Physics: Complexity, v. 2, n. 3, 2021Tradução . . Disponível em: https://doi.org/10.1088/2632-072X/abedc2. Acesso em: 04 nov. 2025.
APA
Medeiros, E., Medrano-T, R. O., Caldas, I. L., & Feudel, U. (2021). The impact of chaotic saddles on the synchronization of complex networks of discrete-time units. Journal of Physics: Complexity, 2( 3). doi:10.1088/2632-072X/abedc2
NLM
Medeiros E, Medrano-T RO, Caldas IL, Feudel U. The impact of chaotic saddles on the synchronization of complex networks of discrete-time units [Internet]. Journal of Physics: Complexity. 2021 ; 2( 3):[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/abedc2
Vancouver
Medeiros E, Medrano-T RO, Caldas IL, Feudel U. The impact of chaotic saddles on the synchronization of complex networks of discrete-time units [Internet]. Journal of Physics: Complexity. 2021 ; 2( 3):[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/2632-072X/abedc2
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LAMEU, Ewandson Luiz et al. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks. Communications in Nonlinear Science and Numerical Simulation, v. 96, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2020.105689. Acesso em: 04 nov. 2025.
APA
Lameu, E. L., Borges, F. S., Iarosz, K., Protachevicz, R. P., Antonopoulos, C. G., Macau, E. E. N., & Batista, A. (2021). Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks. Communications in Nonlinear Science and Numerical Simulation, 96. doi:10.1016/j.cnsns.2020.105689
NLM
Lameu EL, Borges FS, Iarosz K, Protachevicz RP, Antonopoulos CG, Macau EEN, Batista A. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 96[citado 2025 nov. 04 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105689
Vancouver
Lameu EL, Borges FS, Iarosz K, Protachevicz RP, Antonopoulos CG, Macau EEN, Batista A. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 96[citado 2025 nov. 04 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105689
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LODE, A. U. J. et al. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates. High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Tradução . Cham: Springer, 2021. p. 599 . Disponível em: https://doi.org/10.1007/978-3-030-66792-4_5. Acesso em: 04 nov. 2025.
APA
Lode, A. U. J., Alon, O. E., Cederbaum, L. E., Chakrabarti, B., Chatterjee, B., Chitra, R., et al. (2021). Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates. In High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019 (p. 599 ). Cham: Springer. doi:10.1007/978-3-030-66792-4_5
NLM
Lode AUJ, Alon OE, Cederbaum LE, Chakrabarti B, Chatterjee B, Chitra R, Gammal A, Haldar SK, Lekava ML, Lévêque C, Lin R, Molignini P, Papariello L, Tsatsos M. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates [Internet]. In: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Cham: Springer; 2021. p. 599 .[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/978-3-030-66792-4_5
Vancouver
Lode AUJ, Alon OE, Cederbaum LE, Chakrabarti B, Chatterjee B, Chitra R, Gammal A, Haldar SK, Lekava ML, Lévêque C, Lin R, Molignini P, Papariello L, Tsatsos M. Crystallization, fermionization, and cavity-induced phase transitions of Bose-Einstein condensates [Internet]. In: High Performance Computing in Science and Engineering '19: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2019. Cham: Springer; 2021. p. 599 .[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/978-3-030-66792-4_5
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
AAB, A. et al. Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks. Journal of Instrumentation, v. 16, n. 7, p. P07016-1-P07016-21, 2021Tradução . . Disponível em: https://doi.org/10.1088/1748-0221/16/07/P07016. Acesso em: 04 nov. 2025.
APA
Aab, A., Arbeletche, L. B., Catalani, F., Souza, V. de, Lang, R. G., Martínez-Huerta, H., et al. (2021). Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks. Journal of Instrumentation, 16( 7), P07016-1-P07016-21. doi:10.1088/1748-0221/16/07/P07016
NLM
Aab A, Arbeletche LB, Catalani F, Souza V de, Lang RG, Martínez-Huerta H, Armand JP, Carvalho Junior WR de, Santos EM, Peixoto CJT. Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks [Internet]. Journal of Instrumentation. 2021 ; 16( 7): P07016-1-P07016-21.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/1748-0221/16/07/P07016
Vancouver
Aab A, Arbeletche LB, Catalani F, Souza V de, Lang RG, Martínez-Huerta H, Armand JP, Carvalho Junior WR de, Santos EM, Peixoto CJT. Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks [Internet]. Journal of Instrumentation. 2021 ; 16( 7): P07016-1-P07016-21.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/1748-0221/16/07/P07016
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VOIVODIC, Rodrigo e BARREIRA, Alexandre. Responses of Halo Occupation Distributions: a new ingredient in the halo model & the impact on galaxy bias. Journal of Cosmology and Astroparticle Physics (JCAP), 2021Tradução . . Disponível em: https://doi.org/10.1088/1475-7516/2021/05/069. Acesso em: 04 nov. 2025.
APA
Voivodic, R., & Barreira, A. (2021). Responses of Halo Occupation Distributions: a new ingredient in the halo model & the impact on galaxy bias. Journal of Cosmology and Astroparticle Physics (JCAP). doi:10.1088/1475-7516/2021/05/069
NLM
Voivodic R, Barreira A. Responses of Halo Occupation Distributions: a new ingredient in the halo model & the impact on galaxy bias [Internet]. Journal of Cosmology and Astroparticle Physics (JCAP). 2021 ;[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/1475-7516/2021/05/069
Vancouver
Voivodic R, Barreira A. Responses of Halo Occupation Distributions: a new ingredient in the halo model & the impact on galaxy bias [Internet]. Journal of Cosmology and Astroparticle Physics (JCAP). 2021 ;[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/1475-7516/2021/05/069
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
AAB, A. et al. Calibration of the underground muon detector of the Pierre Auger Observatory. Journal of Instrumentation, v. 16, p. P04003-1-P04003-24, 2021Tradução . . Disponível em: https://doi.org/10.1088/1748-0221/16/04/P04003. Acesso em: 04 nov. 2025.
APA
Aab, A., Arbeletche, L. B., Catalani, F., Souza, V. de, Lang, R. G., Martínez-Huerta, H., et al. (2021). Calibration of the underground muon detector of the Pierre Auger Observatory. Journal of Instrumentation, 16, P04003-1-P04003-24. doi:10.1088/1748-0221/16/04/P04003
NLM
Aab A, Arbeletche LB, Catalani F, Souza V de, Lang RG, Martínez-Huerta H, Armand JP, Carvalho Junior WR de, Santos EM, Peixoto CJT. Calibration of the underground muon detector of the Pierre Auger Observatory [Internet]. Journal of Instrumentation. 2021 ; 16 P04003-1-P04003-24.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/1748-0221/16/04/P04003
Vancouver
Aab A, Arbeletche LB, Catalani F, Souza V de, Lang RG, Martínez-Huerta H, Armand JP, Carvalho Junior WR de, Santos EM, Peixoto CJT. Calibration of the underground muon detector of the Pierre Auger Observatory [Internet]. Journal of Instrumentation. 2021 ; 16 P04003-1-P04003-24.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/1748-0221/16/04/P04003
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SILVA, Matheus Palmero et al. Sub-diffusive behavior in the Standard Map. European Physical Journal - Special Topics, 2021Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00165-2. Acesso em: 04 nov. 2025.
APA
Silva, M. P., Iturry, G. D., Caldas, I. L., & Sokolov, I. (2021). Sub-diffusive behavior in the Standard Map. European Physical Journal - Special Topics. doi:10.1140/epjs/s11734-021-00165-2
NLM
Silva MP, Iturry GD, Caldas IL, Sokolov I. Sub-diffusive behavior in the Standard Map [Internet]. European Physical Journal - Special Topics. 2021 ;[citado 2025 nov. 04 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00165-2
Vancouver
Silva MP, Iturry GD, Caldas IL, Sokolov I. Sub-diffusive behavior in the Standard Map [Internet]. European Physical Journal - Special Topics. 2021 ;[citado 2025 nov. 04 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00165-2