Filtros : "SOLITONS" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Removido: "2022" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e CAVALCANTE, Márcio. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, v. 34, n. 5, p. 3373-3410, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abea6b. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Cavalcante, M. (2021). Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, 34( 5), 3373-3410. doi:10.1088/1361-6544/abea6b
    • NLM

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
    • Vancouver

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
  • Source: Quarterly of Applied Mathematics. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e SAUT, Jean-Claude. Existence of solitary wave solutions for internal waves in two-layer systems. Quarterly of Applied Mathematics, v. 78, n. 1, p. 75-105, 2020Tradução . . Disponível em: https://doi.org/10.1090/qam/1546. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Saut, J. -C. (2020). Existence of solitary wave solutions for internal waves in two-layer systems. Quarterly of Applied Mathematics, 78( 1), 75-105. doi:10.1090/qam/1546
    • NLM

      Pava JA, Saut J-C. Existence of solitary wave solutions for internal waves in two-layer systems [Internet]. Quarterly of Applied Mathematics. 2020 ; 78( 1): 75-105.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/qam/1546
    • Vancouver

      Pava JA, Saut J-C. Existence of solitary wave solutions for internal waves in two-layer systems [Internet]. Quarterly of Applied Mathematics. 2020 ; 78( 1): 75-105.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/qam/1546
  • Source: Advances in Differential Equations. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, v. 23, n. 11-12, p. 793-846, 2018Tradução . . Disponível em: https://doi.org/10.1177/1747954118808068. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Goloshchapova, N. (2018). Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph. Advances in Differential Equations, 23( 11-12), 793-846. doi:10.1177/1747954118808068
    • NLM

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1177/1747954118808068
    • Vancouver

      Pava JA, Goloshchapova N. Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph [Internet]. Advances in Differential Equations. 2018 ; 23( 11-12): 793-846.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1177/1747954118808068
  • Source: Nagoya Mathematical Journal. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e BANQUET BRANGO, Carlos Alberto. Instability of periodic traveling waves for the symmetric regularized long wave equation. Nagoya Mathematical Journal, v. 219, p. 235-268, 2015Tradução . . Disponível em: https://doi.org/10.1215/00277630-2891870. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Banquet Brango, C. A. (2015). Instability of periodic traveling waves for the symmetric regularized long wave equation. Nagoya Mathematical Journal, 219, 235-268. doi:10.1215/00277630-2891870
    • NLM

      Pava JA, Banquet Brango CA. Instability of periodic traveling waves for the symmetric regularized long wave equation [Internet]. Nagoya Mathematical Journal. 2015 ; 219 235-268.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1215/00277630-2891870
    • Vancouver

      Pava JA, Banquet Brango CA. Instability of periodic traveling waves for the symmetric regularized long wave equation [Internet]. Nagoya Mathematical Journal. 2015 ; 219 235-268.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1215/00277630-2891870
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA ASSINTÓTICA, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Orlando Francisco. Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, n. 153, p. 9 , 2014Tradução . . Disponível em: http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html. Acesso em: 15 nov. 2024.
    • APA

      Lopes, O. F. (2014). Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, ( 153), 9 . Recuperado de http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html
    • NLM

      Lopes OF. Stability of solitary waves for a three-wave interaction model [Internet]. Electronic Journal of Differential Equations. 2014 ;( 153): 9 .[citado 2024 nov. 15 ] Available from: http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html
    • Vancouver

      Lopes OF. Stability of solitary waves for a three-wave interaction model [Internet]. Electronic Journal of Differential Equations. 2014 ;( 153): 9 .[citado 2024 nov. 15 ] Available from: http://ejde.math.txstate.edu/Volumes/2014/153/abstr.html
  • Source: SIAM Journal on Mathematical Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLITONS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e NATALI, Fábio. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions. SIAM Journal on Mathematical Analysis, v. 40, n. 3, p. 1123-1151, 2008Tradução . . Disponível em: https://doi.org/10.1137/080718450. Acesso em: 15 nov. 2024.
    • APA

      Pava, J. A., & Natali, F. (2008). Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions. SIAM Journal on Mathematical Analysis, 40( 3), 1123-1151. doi:10.1137/080718450
    • NLM

      Pava JA, Natali F. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions [Internet]. SIAM Journal on Mathematical Analysis. 2008 ; 40( 3): 1123-1151.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1137/080718450
    • Vancouver

      Pava JA, Natali F. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions [Internet]. SIAM Journal on Mathematical Analysis. 2008 ; 40( 3): 1123-1151.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1137/080718450

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024