Linear instability criterion for the Korteweg–de Vries equation on metric star graphs (2021)
- Authors:
- Autor USP: PAVA, JAIME ANGULO - IME
- Unidade: IME
- DOI: 10.1088/1361-6544/abea6b
- Subjects: SOLITONS; EQUAÇÕES DIFERENCIAIS PARCIAIS
- Keywords: Korteweg–de Vries model; star graph; instability; δ-type interaction; extension theory; perturbation theory
- Language: Inglês
- Imprenta:
- Source:
- Título: Nonlinearity
- ISSN: 0951-7715
- Volume/Número/Paginação/Ano: v. 34, n. 5, p. 3373-3410, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
PAVA, Jaime Angulo e CAVALCANTE, Márcio. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, v. 34, n. 5, p. 3373-3410, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abea6b. Acesso em: 20 jan. 2026. -
APA
Pava, J. A., & Cavalcante, M. (2021). Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, 34( 5), 3373-3410. doi:10.1088/1361-6544/abea6b -
NLM
Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1088/1361-6544/abea6b -
Vancouver
Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1088/1361-6544/abea6b - The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability
- Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph
- The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability
- Stability for the modified and fourth-order Benjamin-Bona-Mahony equations
- Global well-posedness and non-linear stability of periodic traveling waves for a Schrodinger-Benajmon-Ono system
- Ill-posedness for periodic nonlinear dispersive equations
- Instability of cnoidal-peak for the NLS-δ-equation
- On the instability of periodic waves for dispersive equations
- Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity
- Orbital stability for the periodic Zakharov system
Informações sobre o DOI: 10.1088/1361-6544/abea6b (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3048451.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
