Instability of periodic traveling waves for the symmetric regularized long wave equation (2015)
- Authors:
- Autor USP: PAVA, JAIME ANGULO - IME
- Unidade: IME
- DOI: 10.1215/00277630-2891870
- Subjects: SOLITONS; EQUAÇÕES DIFERENCIAIS PARCIAIS; SOLUÇÕES PERIÓDICAS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Nagoya Mathematical Journal
- ISSN: 2152-6842
- Volume/Número/Paginação/Ano: v. 219, p. 235-268, Sept. 2015
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
PAVA, Jaime Angulo e BANQUET BRANGO, Carlos Alberto. Instability of periodic traveling waves for the symmetric regularized long wave equation. Nagoya Mathematical Journal, v. 219, p. 235-268, 2015Tradução . . Disponível em: https://doi.org/10.1215/00277630-2891870. Acesso em: 29 dez. 2025. -
APA
Pava, J. A., & Banquet Brango, C. A. (2015). Instability of periodic traveling waves for the symmetric regularized long wave equation. Nagoya Mathematical Journal, 219, 235-268. doi:10.1215/00277630-2891870 -
NLM
Pava JA, Banquet Brango CA. Instability of periodic traveling waves for the symmetric regularized long wave equation [Internet]. Nagoya Mathematical Journal. 2015 ; 219 235-268.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1215/00277630-2891870 -
Vancouver
Pava JA, Banquet Brango CA. Instability of periodic traveling waves for the symmetric regularized long wave equation [Internet]. Nagoya Mathematical Journal. 2015 ; 219 235-268.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1215/00277630-2891870 - On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction
- São Paulo Journal of Mathematical Sciences
- Orbital stability for the periodic Zakharov system
- Opening note: third Workshop on nonlinear dispersive equations, IMECC-UNICAMP, 2017. [Editorial]
- Stability of standing waves for logarithmic Schrodinger equation with attractive delta potential
- Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrodinger equations
- Ill-posedness for periodic nonlinear dispersive equations
- The regularized Boussinesq equation: instability of periodic traveling waves
- Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity
- The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability
Informações sobre o DOI: 10.1215/00277630-2891870 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
