Filtros : "MECÂNICA ESTATÍSTICA" "IAMBARTSEV, ANATOLI" Removido: "Universidade Federal da Bahia (UFBA)" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Physics. Unidade: IME

    Assuntos: MECÂNICA ESTATÍSTICA, MATERIAIS MAGNÉTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Roberto et al. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, v. 62, n. artigo 103301, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1063/5.0020757. Acesso em: 03 nov. 2025.
    • APA

      Fernández, R., González-Navarrete, M., Pechersky, E., & Yambartsev, A. (2021). Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, 62( artigo 103301), 1-13. doi:10.1063/5.0020757
    • NLM

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/5.0020757
    • Vancouver

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/5.0020757
  • Fonte: Latin American Journal of Probability and Mathematical Statistics. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA, GRAFOS ALEATÓRIOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOVCHEGOV, Yevgeniy e OTTO, Peter T. e YAMBARTSEV, Anatoli. Cross-multiplicative coalescent processes and applications. Latin American Journal of Probability and Mathematical Statistics, v. 18, p. 81-106, 2021Tradução . . Disponível em: https://doi.org/10.30757/ALEA.V18-05. Acesso em: 03 nov. 2025.
    • APA

      Kovchegov, Y., Otto, P. T., & Yambartsev, A. (2021). Cross-multiplicative coalescent processes and applications. Latin American Journal of Probability and Mathematical Statistics, 18, 81-106. doi:10.30757/ALEA.V18-05
    • NLM

      Kovchegov Y, Otto PT, Yambartsev A. Cross-multiplicative coalescent processes and applications [Internet]. Latin American Journal of Probability and Mathematical Statistics. 2021 ; 18 81-106.[citado 2025 nov. 03 ] Available from: https://doi.org/10.30757/ALEA.V18-05
    • Vancouver

      Kovchegov Y, Otto PT, Yambartsev A. Cross-multiplicative coalescent processes and applications [Internet]. Latin American Journal of Probability and Mathematical Statistics. 2021 ; 18 81-106.[citado 2025 nov. 03 ] Available from: https://doi.org/10.30757/ALEA.V18-05
  • Fonte: Journal of Statistical Physics. Unidade: IME

    Assuntos: MODELO DE ISING, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZÁLEZ NAVARRETE, Manuel Alejandro e PECHERSKY, Eugene A e YAMBARTSEV, Anatoli. Phase transition in ferromagnetic Ising model with a cell-board external field. Journal of Statistical Physics, v. 162, n. Ja 2016, p. 139-161, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-015-1392-9. Acesso em: 03 nov. 2025.
    • APA

      González Navarrete, M. A., Pechersky, E. A., & Yambartsev, A. (2016). Phase transition in ferromagnetic Ising model with a cell-board external field. Journal of Statistical Physics, 162( Ja 2016), 139-161. doi:10.1007/s10955-015-1392-9
    • NLM

      González Navarrete MA, Pechersky EA, Yambartsev A. Phase transition in ferromagnetic Ising model with a cell-board external field [Internet]. Journal of Statistical Physics. 2016 ; 162( Ja 2016): 139-161.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/s10955-015-1392-9
    • Vancouver

      González Navarrete MA, Pechersky EA, Yambartsev A. Phase transition in ferromagnetic Ising model with a cell-board external field [Internet]. Journal of Statistical Physics. 2016 ; 162( Ja 2016): 139-161.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/s10955-015-1392-9
  • Fonte: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assuntos: MECÂNICA QUÂNTICA, MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KELBERT, Mark e SUHOV, Yu. M e IAMBARTSEV, Anatoli. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, v. 28, n. 4, p. 515-537, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-BJPS222. Acesso em: 03 nov. 2025.
    • APA

      Kelbert, M., Suhov, Y. M., & Iambartsev, A. (2014). A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins. Brazilian Journal of Probability and Statistics, 28( 4), 515-537. doi:10.1214/13-BJPS222
    • NLM

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/13-BJPS222
    • Vancouver

      Kelbert M, Suhov YM, Iambartsev A. A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins [Internet]. Brazilian Journal of Probability and Statistics. 2014 ; 28( 4): 515-537.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1214/13-BJPS222
  • Fonte: Journal of Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Juan et al. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, v. 54, n. 6, p. 1-17, 2013Tradução . . Disponível em: https://doi.org/10.1063/1.4808101. Acesso em: 03 nov. 2025.
    • APA

      Hernandez, J., Suhov, Y., Iambartsev, A., & Zohren, S. (2013). Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, 54( 6), 1-17. doi:10.1063/1.4808101
    • NLM

      Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.4808101
    • Vancouver

      Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1063/1.4808101

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025