Filtros : "COHOMOLOGIA" "IME" Removido: "2004" Limpar

Filtros



Refine with date range


  • Source: Journal of Logic and Computation. Unidade: IME

    Subjects: TEORIA DAS CATEGORIAS, COHOMOLOGIA

    Disponível em 2025-01-22Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TENORIO, Ana Luiza e MENDES, Caio de Andrade e MARIANO, Hugo Luiz. On sheaves on semicartesian quantales and their truth values. Journal of Logic and Computation, 2024Tradução . . Disponível em: https://doi.org/10.1093/logcom/exad081. Acesso em: 31 out. 2024.
    • APA

      Tenorio, A. L., Mendes, C. de A., & Mariano, H. L. (2024). On sheaves on semicartesian quantales and their truth values. Journal of Logic and Computation. doi:10.1093/logcom/exad081
    • NLM

      Tenorio AL, Mendes C de A, Mariano HL. On sheaves on semicartesian quantales and their truth values [Internet]. Journal of Logic and Computation. 2024 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/logcom/exad081
    • Vancouver

      Tenorio AL, Mendes C de A, Mariano HL. On sheaves on semicartesian quantales and their truth values [Internet]. Journal of Logic and Computation. 2024 ;[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/logcom/exad081
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, v. 639, p. 120-149, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.09.044. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2024). Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, 639, 120-149. doi:10.1016/j.jalgebra.2023.09.044
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Strongly stratifying ideals, Morita contexts and Hochschild homology [Internet]. Journal of Algebra. 2024 ; 639 120-149.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.09.044
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Strongly stratifying ideals, Morita contexts and Hochschild homology [Internet]. Journal of Algebra. 2024 ; 639 120-149.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.09.044
  • Source: The Quarterly Journal of Mathematics. Unidade: IME

    Subjects: COHOMOLOGIA, ÁLGEBRAS DE HOPF

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Marcelo Muniz e DOKUCHAEV, Michael e KOCHLOUKOVA, Dessislava H. Homology and cohomology via the partial group algebra. The Quarterly Journal of Mathematics, v. 75, n. 2, p. 613-661, 2024Tradução . . Disponível em: https://doi.org/10.1093/qmath/haae017. Acesso em: 31 out. 2024.
    • APA

      Alves, M. M., Dokuchaev, M., & Kochloukova, D. H. (2024). Homology and cohomology via the partial group algebra. The Quarterly Journal of Mathematics, 75( 2), 613-661. doi:10.1093/qmath/haae017
    • NLM

      Alves MM, Dokuchaev M, Kochloukova DH. Homology and cohomology via the partial group algebra [Internet]. The Quarterly Journal of Mathematics. 2024 ; 75( 2): 613-661.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haae017
    • Vancouver

      Alves MM, Dokuchaev M, Kochloukova DH. Homology and cohomology via the partial group algebra [Internet]. The Quarterly Journal of Mathematics. 2024 ; 75( 2): 613-661.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/qmath/haae017
  • Source: Proceedings. Conference titles: Categorical, Combinatorial and Geometric Representation Theory and Related Topics. Unidade: IME

    Subjects: COHOMOLOGIA, SUPERÁLGEBRAS DE LIE, OPERADORES DIFERENCIAIS

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOS SANTOS, Felipe Albino e FUTORNY, Vyacheslav e ZHAO, Kaiming. Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. 2024, Anais.. Providence: AMS, 2024. . Acesso em: 31 out. 2024.
    • APA

      Dos Santos, F. A., Futorny, V., & Zhao, K. (2024). Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. In Proceedings. Providence: AMS. doi:10.1090/pspum/108/01962
    • NLM

      Dos Santos FA, Futorny V, Zhao K. Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. Proceedings. 2024 ;[citado 2024 out. 31 ]
    • Vancouver

      Dos Santos FA, Futorny V, Zhao K. Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials. Proceedings. 2024 ;[citado 2024 out. 31 ]
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, SEQUÊNCIAS ESPECTRAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e USUGA, Emmanuel Jerez. (Co)homology of partial smash products. Journal of Algebra, v. 652, p. 113-157, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2024.04.017. Acesso em: 31 out. 2024.
    • APA

      Dokuchaev, M., & Usuga, E. J. (2024). (Co)homology of partial smash products. Journal of Algebra, 652, 113-157. doi:10.1016/j.jalgebra.2024.04.017
    • NLM

      Dokuchaev M, Usuga EJ. (Co)homology of partial smash products [Internet]. Journal of Algebra. 2024 ; 652 113-157.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.04.017
    • Vancouver

      Dokuchaev M, Usuga EJ. (Co)homology of partial smash products [Internet]. Journal of Algebra. 2024 ; 652 113-157.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.04.017
  • Unidade: IME

    Subjects: TEORIA DAS CATEGORIAS, COHOMOLOGIA, FEIXES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TENORIO, Ana Luiza. Sheaves on semicartesian monoidal categories and applications in the quantalic case. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/. Acesso em: 31 out. 2024.
    • APA

      Tenorio, A. L. (2023). Sheaves on semicartesian monoidal categories and applications in the quantalic case (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/
    • NLM

      Tenorio AL. Sheaves on semicartesian monoidal categories and applications in the quantalic case [Internet]. 2023 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/
    • Vancouver

      Tenorio AL. Sheaves on semicartesian monoidal categories and applications in the quantalic case [Internet]. 2023 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-31082023-163143/
  • Unidade: IME

    Subjects: COHOMOLOGIA, HOMOTOPIA, TOPOLOGIA ALGÉBRICA, FUNDAMENTOS DA MATEMÁTICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRE, Thiago. On the homotopy types. 2022. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/. Acesso em: 31 out. 2024.
    • APA

      Alexandre, T. (2022). On the homotopy types (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
    • NLM

      Alexandre T. On the homotopy types [Internet]. 2022 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
    • Vancouver

      Alexandre T. On the homotopy types [Internet]. 2022 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, v. 53, n. 6, p. 1636-1650, 2021Tradução . . Disponível em: https://doi.org/10.1112/blms.12516. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2021). Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, 53( 6), 1636-1650. doi:10.1112/blms.12516
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12516
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/blms.12516
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, COHOMOLOGIA, ÁLGEBRAS DE JORDAN, CATEGORIAS ABELIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e MATHIEU, Olivier. On the free Jordan algebras. Advances in Mathematics, v. 383, p. 1-35, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2021.107690. Acesso em: 31 out. 2024.
    • APA

      Kashuba, I., & Mathieu, O. (2021). On the free Jordan algebras. Advances in Mathematics, 383, 1-35. doi:10.1016/j.aim.2021.107690
    • NLM

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2021.107690
    • Vancouver

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.aim.2021.107690
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, TEORIA DAS CATEGORIAS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Unidade: IME

    Assunto: COHOMOLOGIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAKUTA, Mayumi. Existence of extensions of semilattices of groups by groups, cohomology, and crossed modules for inverse semigroups. 2020. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16062020-172746/. Acesso em: 31 out. 2024.
    • APA

      Makuta, M. (2020). Existence of extensions of semilattices of groups by groups, cohomology, and crossed modules for inverse semigroups (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16062020-172746/
    • NLM

      Makuta M. Existence of extensions of semilattices of groups by groups, cohomology, and crossed modules for inverse semigroups [Internet]. 2020 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16062020-172746/
    • Vancouver

      Makuta M. Existence of extensions of semilattices of groups by groups, cohomology, and crossed modules for inverse semigroups [Internet]. 2020 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-16062020-172746/
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, v. 148, n. 6, p. 2421-2432, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14936. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, 148( 6), 2421-2432. doi:10.1090/proc/14936
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/14936
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/14936
  • Source: International Mathematics Research Notices. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAINIC, Marius e MESTRE, João Nuno e STRUCHINER, Ivan. Deformations of Lie groupoids. International Mathematics Research Notices, v. 2020, n. 21, p. 7662–7746, 2020Tradução . . Disponível em: https://doi.org/10.1093/imrn/rny221. Acesso em: 31 out. 2024.
    • APA

      Crainic, M., Mestre, J. N., & Struchiner, I. (2020). Deformations of Lie groupoids. International Mathematics Research Notices, 2020( 21), 7662–7746. doi:10.1093/imrn/rny221
    • NLM

      Crainic M, Mestre JN, Struchiner I. Deformations of Lie groupoids [Internet]. International Mathematics Research Notices. 2020 ; 2020( 21): 7662–7746.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/imrn/rny221
    • Vancouver

      Crainic M, Mestre JN, Struchiner I. Deformations of Lie groupoids [Internet]. International Mathematics Research Notices. 2020 ; 2020( 21): 7662–7746.[citado 2024 out. 31 ] Available from: https://doi.org/10.1093/imrn/rny221
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Source: Journal of Noncommutative Geometry. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Hochschild cohomology of algebras arising from categories and from bounded quivers. Journal of Noncommutative Geometry, v. 13, n. 3, p. 1011-1053, 2019Tradução . . Disponível em: https://doi.org/10.4171/JNCG/344. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Solotar, A., Marcos, E. do N., & Lanzilotta, M. (2019). Hochschild cohomology of algebras arising from categories and from bounded quivers. Journal of Noncommutative Geometry, 13( 3), 1011-1053. doi:10.4171/JNCG/344
    • NLM

      Cibils C, Solotar A, Marcos E do N, Lanzilotta M. Hochschild cohomology of algebras arising from categories and from bounded quivers [Internet]. Journal of Noncommutative Geometry. 2019 ; 13( 3): 1011-1053.[citado 2024 out. 31 ] Available from: https://doi.org/10.4171/JNCG/344
    • Vancouver

      Cibils C, Solotar A, Marcos E do N, Lanzilotta M. Hochschild cohomology of algebras arising from categories and from bounded quivers [Internet]. Journal of Noncommutative Geometry. 2019 ; 13( 3): 1011-1053.[citado 2024 out. 31 ] Available from: https://doi.org/10.4171/JNCG/344
  • Unidade: IME

    Subjects: COHOMOLOGIA, HOMOLOGIA, HOMOTOPIA, MOTIVOS (GEOMETRIA ALGÉBRICA), GEOMETRIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YAMAUTI, Fernando Garcia. The form of (co)homology. 2019. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2019. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082019-075031/. Acesso em: 31 out. 2024.
    • APA

      Yamauti, F. G. (2019). The form of (co)homology (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082019-075031/
    • NLM

      Yamauti FG. The form of (co)homology [Internet]. 2019 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082019-075031/
    • Vancouver

      Yamauti FG. The form of (co)homology [Internet]. 2019 ;[citado 2024 out. 31 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-15082019-075031/
  • Conference titles: Joint Meeting Brazil-France in Mathematics. Unidade: IME

    Subjects: K-TEORIA, ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento. Adding or deleting arrows of a bound quiver algebra and Hochschild (co)homology. 2019, Anais.. Rio de Janeiro: Impa, 2019. Disponível em: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf. Acesso em: 31 out. 2024.
    • APA

      Marcos, E. do N. (2019). Adding or deleting arrows of a bound quiver algebra and Hochschild (co)homology. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • NLM

      Marcos E do N. Adding or deleting arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. 2019 ;[citado 2024 out. 31 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • Vancouver

      Marcos E do N. Adding or deleting arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. 2019 ;[citado 2024 out. 31 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
  • Conference titles: Joint Meeting Brazil-France in Mathematics. Unidade: IME

    Subjects: K-TEORIA, HOMOLOGIA, ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’s conjecture. 2019, Anais.. Rio de Janeiro: Impa, 2019. Disponível em: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2019). Split bounded extension algebras and Han’s conjecture. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’s conjecture [Internet]. 2019 ;[citado 2024 out. 31 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’s conjecture [Internet]. 2019 ;[citado 2024 out. 31 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. The first Hochschild (co)homology when adding arrows to a bound quiver algebra. Journal of Algebra, v. 540, p. 63-77, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.08.029. Acesso em: 31 out. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., Schroll, S., & Solotar, A. (2019). The first Hochschild (co)homology when adding arrows to a bound quiver algebra. Journal of Algebra, 540, 63-77. doi:10.1016/j.jalgebra.2019.08.029
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Schroll S, Solotar A. The first Hochschild (co)homology when adding arrows to a bound quiver algebra [Internet]. Journal of Algebra. 2019 ; 540 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.08.029
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Schroll S, Solotar A. The first Hochschild (co)homology when adding arrows to a bound quiver algebra [Internet]. Journal of Algebra. 2019 ; 540 63-77.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.08.029
  • Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, INVARIANTES, ÁLGEBRA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMAYA, Ana Melisa Paiba. Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild. 2018. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18022019-141713/. Acesso em: 31 out. 2024.
    • APA

      Amaya, A. M. P. (2018). Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18022019-141713/
    • NLM

      Amaya AMP. Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild [Internet]. 2018 ;[citado 2024 out. 31 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18022019-141713/
    • Vancouver

      Amaya AMP. Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild [Internet]. 2018 ;[citado 2024 out. 31 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18022019-141713/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024