Filtros : "Bonotto, Everaldo de Mello" "2023" Removido: "EQUAÇÕES DIFERENCIAIS FUNCIONAIS" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/. Acesso em: 11 nov. 2024.
    • APA

      Azevedo, V. T. (2023). Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
    • NLM

      Azevedo VT. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem [Internet]. 2023 ;[citado 2024 nov. 11 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
    • Vancouver

      Azevedo VT. Existência e estabilidade de uma família de atratores exponenciais pullback para uma equação de evolução semilinear não autônoma de segunda ordem [Internet]. 2023 ;[citado 2024 nov. 11 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-27042023-160743/
  • Source: Journal of Geometric Analysis. Unidade: ICMC

    Subjects: PROBLEMAS DE CONTORNO, SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS DE VOLTERRA-STIELTJES, ANÁLISE REAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MACENA, Maria Carolina Stefani Mesquita. Boundary value problems for generalized ODEs. Journal of Geometric Analysis, v. 33, n. Ja 2023, p. 1-37, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12220-022-01090-z. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Federson, M., & Macena, M. C. S. M. (2023). Boundary value problems for generalized ODEs. Journal of Geometric Analysis, 33( Ja 2023), 1-37. doi:10.1007/s12220-022-01090-z
    • NLM

      Bonotto E de M, Federson M, Macena MCSM. Boundary value problems for generalized ODEs [Internet]. Journal of Geometric Analysis. 2023 ; 33( Ja 2023): 1-37.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12220-022-01090-z
    • Vancouver

      Bonotto E de M, Federson M, Macena MCSM. Boundary value problems for generalized ODEs [Internet]. Journal of Geometric Analysis. 2023 ; 33( Ja 2023): 1-37.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12220-022-01090-z
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, v. 365, p. 521-559, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.022. Acesso em: 11 nov. 2024.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2023). Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, 365, 521-559. doi:10.1016/j.jde.2023.04.022
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
  • Source: Nonlinear Differential Equations and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e WEBLER, C. M. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, v. 30, p. 1-29, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00859-7. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Webler, C. M. (2023). Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling. Nonlinear Differential Equations and Applications, 30, 1-29. doi:10.1007/s00030-023-00859-7
    • NLM

      Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00030-023-00859-7
    • Vancouver

      Bonotto E de M, Nascimento MJD, Webler CM. Long-time behavior for a non-autonomous Klein–Gordon–Schrödinger system with Yukawa coupling [Internet]. Nonlinear Differential Equations and Applications. 2023 ; 30 1-29.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00030-023-00859-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024