Filtros : "Bonotto, Everaldo de Mello" "Estados Unidos" Removido: "Indexado no Zentralblatt MATH" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2024). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PEREIRA, Fabiano. Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, v. 384, p. 279-325, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.12.008. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pereira, F. (2024). Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, 384, 279-325. doi:10.1016/j.jde.2023.12.008
    • NLM

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
    • Vancouver

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: ATRATORES, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, v. 90, p. 1-47, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00245-024-10170-1. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Carvalho, A. N. de, Nascimento, M. J. D., & Santiago, E. B. (2024). Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, 90, 1-47. doi:10.1007/s00245-024-10170-1
    • NLM

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
    • Vancouver

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
  • Source: Journal ofDifferentialEquations. Unidade: ICMC

    Subjects: ATRATORES, SISTEMAS DINÂMICOS, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela Paula e SOUTO, G. M. Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors. Journal ofDifferentialEquations, v. 410, p. 46-75, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.07.017. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Demuner, D. P., & Souto, G. M. (2024). Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors. Journal ofDifferentialEquations, 410, 46-75. doi:10.1016/j.jde.2024.07.017
    • NLM

      Bonotto E de M, Demuner DP, Souto GM. Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors [Internet]. Journal ofDifferentialEquations. 2024 ; 410 46-75.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2024.07.017
    • Vancouver

      Bonotto E de M, Demuner DP, Souto GM. Recursiveness on impulsive dynamical systems: minimality, non-wandering points, the center of Birkhoff and attractors [Internet]. Journal ofDifferentialEquations. 2024 ; 410 46-75.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2024.07.017
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e SIQUEIRA, J. On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, v. 540, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128622. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Siqueira, J. (2024). On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, 540( 2), 1-12. doi:10.1016/j.jmaa.2024.128622
    • NLM

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
    • Vancouver

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, v. 365, p. 521-559, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.022. Acesso em: 11 nov. 2024.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2023). Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, 365, 521-559. doi:10.1016/j.jde.2023.04.022
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SOLUÇÕES PERIÓDICAS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Suzete Maria Silva e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of neutral functional differential equations. Journal of Differential Equations, v. 350, p. 89-123, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.12.014. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M. S., Bonotto, E. de M., & Silva, M. R. da. (2023). Periodic solutions of neutral functional differential equations. Journal of Differential Equations, 350, 89-123. doi:10.1016/j.jde.2022.12.014
    • NLM

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
    • Vancouver

      Afonso SMS, Bonotto E de M, Silva MR da. Periodic solutions of neutral functional differential equations [Internet]. Journal of Differential Equations. 2023 ; 350 89-123.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2022.12.014
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SOLUÇÕES PERIÓDICAS, EQUAÇÕES INTEGRAIS, INTEGRAL DE DENJOY

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S M e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of measure functional differential equations. Journal of Differential Equations, v. 309, p. 196-230, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.031. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Silva, M. R. da. (2022). Periodic solutions of measure functional differential equations. Journal of Differential Equations, 309, 196-230. doi:10.1016/j.jde.2021.11.031
    • NLM

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
    • Vancouver

      Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031
  • Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INTEGRAÇÃO, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE), DINÂMICA TOPOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Generalized ordinary differential equations in abstract spaces and applications. . Hoboken: Wiley. Disponível em: https://doi.org/10.1002/9781119655022. Acesso em: 11 nov. 2024. , 2021
    • APA

      Generalized ordinary differential equations in abstract spaces and applications. (2021). Generalized ordinary differential equations in abstract spaces and applications. Hoboken: Wiley. doi:10.1002/9781119655022
    • NLM

      Generalized ordinary differential equations in abstract spaces and applications [Internet]. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/9781119655022
    • Vancouver

      Generalized ordinary differential equations in abstract spaces and applications [Internet]. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/9781119655022
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Generalized ordinary differential equations in abstract spaces and applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INTEGRAÇÃO, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, CONTROLE (TEORIA DE SISTEMAS E CONTROLE), DINÂMICA TOPOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MESQUITA, Jaqueline Godoy. It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio]. Generalized ordinary differential equations in abstract spaces and applications. Hoboken: Wiley. Disponível em: https://doi.org/10.1002/9781119655022.fmatter. Acesso em: 11 nov. 2024. , 2021
    • APA

      Bonotto, E. de M., Federson, M., & Mesquita, J. G. (2021). It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio]. Generalized ordinary differential equations in abstract spaces and applications. Hoboken: Wiley. doi:10.1002/9781119655022.fmatter
    • NLM

      Bonotto E de M, Federson M, Mesquita JG. It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio] [Internet]. Generalized ordinary differential equations in abstract spaces and applications. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/9781119655022.fmatter
    • Vancouver

      Bonotto E de M, Federson M, Mesquita JG. It is well known that the remarkable theory of generalized ordinary differential equations.. [Prefácio] [Internet]. Generalized ordinary differential equations in abstract spaces and applications. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/9781119655022.fmatter
  • Source: Discrete and Continuous Dynamical Systems Series B. Unidade: ICMC

    Subjects: MODELO CASCATA, ATRATORES, SEMIGRUPOS (COMBINATÓRIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, v. 26, n. 9, p. 4645-4661, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020306. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Collegari, R., & Uzal, J. M. (2021). Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, 26( 9), 4645-4661. doi:10.3934/dcdsb.2020306
    • NLM

      Bonotto E de M, Bortolan MC, Collegari R, Uzal JM. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2021 ; 26( 9): 4645-4661.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/dcdsb.2020306
    • Vancouver

      Bonotto E de M, Bortolan MC, Collegari R, Uzal JM. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2021 ; 26( 9): 4645-4661.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/dcdsb.2020306
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela Paula. Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1979-1996, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020087. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2020). Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, 19( 4), 1979-1996. doi:10.3934/cpaa.2020087
    • NLM

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/cpaa.2020087
    • Vancouver

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/cpaa.2020087
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, v. 32, p. 2021-2060, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09801-x. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Federson, M., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson M, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Impulsive non-autonomous dynamical systems and impulsive cocycle attractors. Mathematical Methods in the Applied Sciences, v. 40, n. 4, p. 1095-1113, 2017Tradução . . Disponível em: https://doi.org/10.1002/mma.4038. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2017). Impulsive non-autonomous dynamical systems and impulsive cocycle attractors. Mathematical Methods in the Applied Sciences, 40( 4), 1095-1113. doi:10.1002/mma.4038
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Impulsive non-autonomous dynamical systems and impulsive cocycle attractors [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40( 4): 1095-1113.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mma.4038
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Impulsive non-autonomous dynamical systems and impulsive cocycle attractors [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40( 4): 1095-1113.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mma.4038
  • Source: Differential and Integral Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e FEDERSON, Marcia. On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, v. 27, n. 7-8, p. 721-742, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395750. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Federson, M. (2014). On exponential stability of functional differential equations with variable impulse perturbations. Differential and Integral Equations, 27( 7-8), 721-742. Recuperado de http://projecteuclid.org/euclid.die/1399395750
    • NLM

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2024 nov. 11 ] Available from: http://projecteuclid.org/euclid.die/1399395750
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M. On exponential stability of functional differential equations with variable impulse perturbations [Internet]. Differential and Integral Equations. 2014 ; 27( 7-8): 721-742.[citado 2024 nov. 11 ] Available from: http://projecteuclid.org/euclid.die/1399395750
  • Source: Journal of Dynamical and Control Systems. Unidades: ICMC, FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e AZEVEDO, K. A. G. On asymptotic stability in impulsive semidynamical systems. Journal of Dynamical and Control Systems, v. 19, n. 3, p. 359\2013380, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10883-013-9183-6. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Azevedo, K. A. G. (2013). On asymptotic stability in impulsive semidynamical systems. Journal of Dynamical and Control Systems, 19( 3), 359\2013380. doi:10.1007/s10883-013-9183-6
    • NLM

      Bonotto E de M, Azevedo KAG. On asymptotic stability in impulsive semidynamical systems [Internet]. Journal of Dynamical and Control Systems. 2013 ; 19( 3): 359\2013380.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10883-013-9183-6
    • Vancouver

      Bonotto E de M, Azevedo KAG. On asymptotic stability in impulsive semidynamical systems [Internet]. Journal of Dynamical and Control Systems. 2013 ; 19( 3): 359\2013380.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10883-013-9183-6
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M et al. Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations. Mathematische Nachrichten, v. 285, n. 5-6, p. 545-561, 2012Tradução . . Disponível em: https://doi.org/10.1002/mana.201000081. Acesso em: 11 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., Federson, M., & Gimenes, L. P. (2012). Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations. Mathematische Nachrichten, 285( 5-6), 545-561. doi:10.1002/mana.201000081
    • NLM

      Afonso SM, Bonotto E de M, Federson M, Gimenes LP. Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations [Internet]. Mathematische Nachrichten. 2012 ; 285( 5-6): 545-561.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.201000081
    • Vancouver

      Afonso SM, Bonotto E de M, Federson M, Gimenes LP. Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations [Internet]. Mathematische Nachrichten. 2012 ; 285( 5-6): 545-561.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.201000081
  • Source: Eletronic Journal of Differential Equations - EJDE. Unidade: ICMC

    Assunto: EQUAÇÕES IMPULSIVAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e GRULHA JÚNIOR, Nivaldo de Góes. Lyapunov stability of closed sets in impulsive semidynamical systems. Eletronic Journal of Differential Equations - EJDE, v. 2010, n. 78 p. 1-18, 2010Tradução . . Disponível em: http://www.emis.de/journals/EJDE/Volumes/2010/78/bonotto.pdf. Acesso em: 11 nov. 2024.
    • APA

      Bonotto, E. de M., & Grulha Júnior, N. de G. (2010). Lyapunov stability of closed sets in impulsive semidynamical systems. Eletronic Journal of Differential Equations - EJDE, 2010( 78 p. 1-18). Recuperado de http://www.emis.de/journals/EJDE/Volumes/2010/78/bonotto.pdf
    • NLM

      Bonotto E de M, Grulha Júnior N de G. Lyapunov stability of closed sets in impulsive semidynamical systems [Internet]. Eletronic Journal of Differential Equations - EJDE. 2010 ; 2010( 78 p. 1-18):[citado 2024 nov. 11 ] Available from: http://www.emis.de/journals/EJDE/Volumes/2010/78/bonotto.pdf
    • Vancouver

      Bonotto E de M, Grulha Júnior N de G. Lyapunov stability of closed sets in impulsive semidynamical systems [Internet]. Eletronic Journal of Differential Equations - EJDE. 2010 ; 2010( 78 p. 1-18):[citado 2024 nov. 11 ] Available from: http://www.emis.de/journals/EJDE/Volumes/2010/78/bonotto.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024