Periodic solutions of measure functional differential equations (2022)
- Authors:
- USP affiliated authors: BONOTTO, EVERALDO DE MELLO - ICMC ; SILVA, MÁRCIA RICHTIELLE DA - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jde.2021.11.031
- Subjects: SOLUÇÕES PERIÓDICAS; EQUAÇÕES INTEGRAIS; INTEGRAL DE DENJOY
- Keywords: Measure functional differential equations; Periodic solutions; Impulsive differential equations; Topological transversality
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Maryland Heights
- Date published: 2022
- Source:
- Título: Journal of Differential Equations
- ISSN: 0022-0396
- Volume/Número/Paginação/Ano: v. 309, p. 196-230, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
AFONSO, S M e BONOTTO, Everaldo de Mello e SILVA, Márcia Richtielle da. Periodic solutions of measure functional differential equations. Journal of Differential Equations, v. 309, p. 196-230, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.031. Acesso em: 25 jan. 2026. -
APA
Afonso, S. M., Bonotto, E. de M., & Silva, M. R. da. (2022). Periodic solutions of measure functional differential equations. Journal of Differential Equations, 309, 196-230. doi:10.1016/j.jde.2021.11.031 -
NLM
Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031 -
Vancouver
Afonso SM, Bonotto E de M, Silva MR da. Periodic solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 309 196-230.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.jde.2021.11.031 - Periodic solutions of neutral functional differential equations
- Periodic solutions of measure and neutral functional differential equations
- Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times
- Impulsive surfaces on dynamical systems
- On the Lyapunov stability theory for impulsive dynamical systems
- Weak almost periodic motions, minimality and stability in impulsive semidynamical systems
- Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation
- A equação de Black-Scholes com ação impulsiva
- Sections and parallelizable semigroups
- Asymptotically almost periodic motions in impulsive semidynamical systems
Informações sobre o DOI: 10.1016/j.jde.2021.11.031 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3053926.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
