Filtros : "ANÉIS COM DIVISÃO" Removido: "2017" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, GRUPOS LIVRES, QUATERNIOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Gabriel de Arêa Leão. Explicit free groups in division rings. 2023. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06022024-122636/. Acesso em: 07 nov. 2024.
    • APA

      Souza, G. de A. L. (2023). Explicit free groups in division rings (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06022024-122636/
    • NLM

      Souza G de AL. Explicit free groups in division rings [Internet]. 2023 ;[citado 2024 nov. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06022024-122636/
    • Vancouver

      Souza G de AL. Explicit free groups in division rings [Internet]. 2023 ;[citado 2024 nov. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-06022024-122636/
  • Unidade: IME

    Assunto: ANÉIS COM DIVISÃO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Pedro Russo de. On the existence of free symmetric pairs in normal subgroups of division rings with involution. 2020. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092020-230836/. Acesso em: 07 nov. 2024.
    • APA

      Oliveira, P. R. de. (2020). On the existence of free symmetric pairs in normal subgroups of division rings with involution (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092020-230836/
    • NLM

      Oliveira PR de. On the existence of free symmetric pairs in normal subgroups of division rings with involution [Internet]. 2020 ;[citado 2024 nov. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092020-230836/
    • Vancouver

      Oliveira PR de. On the existence of free symmetric pairs in normal subgroups of division rings with involution [Internet]. 2020 ;[citado 2024 nov. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092020-230836/
  • Source: Canadian Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁNCHEZ, Javier. Free group algebras in division rings with valuation II. Canadian Journal of Mathematics, v. 72, n. 6, p. 1463-1504, 2020Tradução . . Disponível em: https://doi.org/10.4153/S0008414X19000348. Acesso em: 07 nov. 2024.
    • APA

      Sánchez, J. (2020). Free group algebras in division rings with valuation II. Canadian Journal of Mathematics, 72( 6), 1463-1504. doi:10.4153/S0008414X19000348
    • NLM

      Sánchez J. Free group algebras in division rings with valuation II [Internet]. Canadian Journal of Mathematics. 2020 ; 72( 6): 1463-1504.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4153/S0008414X19000348
    • Vancouver

      Sánchez J. Free group algebras in division rings with valuation II [Internet]. Canadian Journal of Mathematics. 2020 ; 72( 6): 1463-1504.[citado 2024 nov. 07 ] Available from: https://doi.org/10.4153/S0008414X19000348
  • Source: Forum Mathematicum. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS ABELIANOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ). Forum Mathematicum, v. 31, n. 3, p. 769-777, 2019Tradução . . Disponível em: https://doi.org/10.1515/forum-2017-0248. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, J. Z. (2019). Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ). Forum Mathematicum, 31( 3), 769-777. doi:10.1515/forum-2017-0248
    • NLM

      Gonçalves JZ. Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ) [Internet]. Forum Mathematicum. 2019 ; 31( 3): 769-777.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1515/forum-2017-0248
    • Vancouver

      Gonçalves JZ. Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ) [Internet]. Forum Mathematicum. 2019 ; 31( 3): 769-777.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1515/forum-2017-0248
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e FORNAROLI, Erica Z e GONÇALVES, Jairo Zacarias. Free algebras in division rings with an involution. Journal of Algebra, v. 509, p. 292-306, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2018.01.025. Acesso em: 07 nov. 2024.
    • APA

      Ferreira, V. de O., Fornaroli, E. Z., & Gonçalves, J. Z. (2018). Free algebras in division rings with an involution. Journal of Algebra, 509, 292-306. doi:10.1016/j.jalgebra.2018.01.025
    • NLM

      Ferreira V de O, Fornaroli EZ, Gonçalves JZ. Free algebras in division rings with an involution [Internet]. Journal of Algebra. 2018 ; 509 292-306.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2018.01.025
    • Vancouver

      Ferreira V de O, Fornaroli EZ, Gonçalves JZ. Free algebras in division rings with an involution [Internet]. Journal of Algebra. 2018 ; 509 292-306.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2018.01.025
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, ÁLGEBRAS LIVRES, GEOMETRIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELL, Jason Pierre e GONÇALVES, Jairo Zacarias. Free algebras and free groups in Ore extensions and free group algebras in division rings. Journal of Algebra, v. 455, p. 235-250, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2016.02.011. Acesso em: 07 nov. 2024.
    • APA

      Bell, J. P., & Gonçalves, J. Z. (2016). Free algebras and free groups in Ore extensions and free group algebras in division rings. Journal of Algebra, 455, 235-250. doi:10.1016/j.jalgebra.2016.02.011
    • NLM

      Bell JP, Gonçalves JZ. Free algebras and free groups in Ore extensions and free group algebras in division rings [Internet]. Journal of Algebra. 2016 ; 455 235-250.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.02.011
    • Vancouver

      Bell JP, Gonçalves JZ. Free algebras and free groups in Ore extensions and free group algebras in division rings [Internet]. Journal of Algebra. 2016 ; 455 235-250.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.02.011
  • Unidade: ICMC

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS COMUTATIVOS, ÁLGEBRAS DE OPERADORES, OPERADORES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDEZ, Roberto Daniel Torrealba. Bases de Gröbner com coeficientes em anéis. 2015. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-28032016-165513/. Acesso em: 07 nov. 2024.
    • APA

      Fernandez, R. D. T. (2015). Bases de Gröbner com coeficientes em anéis (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-28032016-165513/
    • NLM

      Fernandez RDT. Bases de Gröbner com coeficientes em anéis [Internet]. 2015 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-28032016-165513/
    • Vancouver

      Fernandez RDT. Bases de Gröbner com coeficientes em anéis [Internet]. 2015 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-28032016-165513/
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Explicit free groups in division rings. Proceedings of the American Mathematical Society, v. 143, p. 459-468, 2015Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2014-12230-1. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2015). Explicit free groups in division rings. Proceedings of the American Mathematical Society, 143, 459-468. doi:10.1090/S0002-9939-2014-12230-1
    • NLM

      Gonçalves JZ, Passman DS. Explicit free groups in division rings [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143 459-468.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12230-1
    • Vancouver

      Gonçalves JZ, Passman DS. Explicit free groups in division rings [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143 459-468.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12230-1
  • Unidade: IME

    Subjects: ÁLGEBRA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Pedro Russo de. O teorema de Amitsur para identidades racionais em anéis com divisão. 2015. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2015. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422. Acesso em: 07 nov. 2024.
    • APA

      Oliveira, P. R. de. (2015). O teorema de Amitsur para identidades racionais em anéis com divisão (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422
    • NLM

      Oliveira PR de. O teorema de Amitsur para identidades racionais em anéis com divisão [Internet]. 2015 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422
    • Vancouver

      Oliveira PR de. O teorema de Amitsur para identidades racionais em anéis com divisão [Internet]. 2015 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-143422
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Free groups in normal subgroups of the multiplicative group of a division ring. Journal of Algebra, v. 440, p. 128-144, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2015.05.020. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2015). Free groups in normal subgroups of the multiplicative group of a division ring. Journal of Algebra, 440, 128-144. doi:10.1016/j.jalgebra.2015.05.020
    • NLM

      Gonçalves JZ, Passman DS. Free groups in normal subgroups of the multiplicative group of a division ring [Internet]. Journal of Algebra. 2015 ; 440 128-144.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2015.05.020
    • Vancouver

      Gonçalves JZ, Passman DS. Free groups in normal subgroups of the multiplicative group of a division ring [Internet]. Journal of Algebra. 2015 ; 440 128-144.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2015.05.020
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, v. 210, n. 1, p. 297-321, 2015Tradução . . Disponível em: https://doi.org/10.1007/s11856-015-1253-x. Acesso em: 07 nov. 2024.
    • APA

      Ferreira, V. de O., & Gonçalves, J. Z. (2015). Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, 210( 1), 297-321. doi:10.1007/s11856-015-1253-x
    • NLM

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s11856-015-1253-x
    • Vancouver

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s11856-015-1253-x
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias e SÁNCHEZ, Javier. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras. International Journal of Algebra and Computation, v. 25, n. 6, p. 1075-1106, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0218196715500319. Acesso em: 07 nov. 2024.
    • APA

      Ferreira, V. de O., Gonçalves, J. Z., & Sánchez, J. (2015). Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras. International Journal of Algebra and Computation, 25( 6), 1075-1106. doi:10.1142/S0218196715500319
    • NLM

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras [Internet]. International Journal of Algebra and Computation. 2015 ; 25( 6): 1075-1106.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1142/S0218196715500319
    • Vancouver

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras [Internet]. International Journal of Algebra and Computation. 2015 ; 25( 6): 1075-1106.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1142/S0218196715500319
  • Source: Journal of Group Theory. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Constructing free groups in a normal subgroup of the multiplicative group of division rings. Journal of Group Theory, v. 18, n. 5, p. 829-843, 2015Tradução . . Disponível em: https://doi.org/10.1515/jgth-2015-0018. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, J. Z. (2015). Constructing free groups in a normal subgroup of the multiplicative group of division rings. Journal of Group Theory, 18( 5), 829-843. doi:10.1515/jgth-2015-0018
    • NLM

      Gonçalves JZ. Constructing free groups in a normal subgroup of the multiplicative group of division rings [Internet]. Journal of Group Theory. 2015 ; 18( 5): 829-843.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1515/jgth-2015-0018
    • Vancouver

      Gonçalves JZ. Constructing free groups in a normal subgroup of the multiplicative group of division rings [Internet]. Journal of Group Theory. 2015 ; 18( 5): 829-843.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1515/jgth-2015-0018
  • Source: Selecta Mathematica. New Series. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERBERA, Dolors e SÁNCHEZ, Javier. The inversion height of the free field is infinite. Selecta Mathematica. New Series, v. 21, n. 3, p. 883-929, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00029-014-0168-4. Acesso em: 07 nov. 2024.
    • APA

      Herbera, D., & Sánchez, J. (2015). The inversion height of the free field is infinite. Selecta Mathematica. New Series, 21( 3), 883-929. doi:10.1007/s00029-014-0168-4
    • NLM

      Herbera D, Sánchez J. The inversion height of the free field is infinite [Internet]. Selecta Mathematica. New Series. 2015 ; 21( 3): 883-929.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00029-014-0168-4
    • Vancouver

      Herbera D, Sánchez J. The inversion height of the free field is infinite [Internet]. Selecta Mathematica. New Series. 2015 ; 21( 3): 883-929.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00029-014-0168-4
  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS QUÂNTICOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HARTWIG, Jonas T. Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN. Mathematische Zeitschrift, v. 276, n. 1-2, p. 1-37, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00209-013-1184-3. Acesso em: 07 nov. 2024.
    • APA

      Futorny, V., & Hartwig, J. T. (2014). Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN. Mathematische Zeitschrift, 276( 1-2), 1-37. doi:10.1007/s00209-013-1184-3
    • NLM

      Futorny V, Hartwig JT. Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN [Internet]. Mathematische Zeitschrift. 2014 ; 276( 1-2): 1-37.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00209-013-1184-3
    • Vancouver

      Futorny V, Hartwig JT. Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN [Internet]. Mathematische Zeitschrift. 2014 ; 276( 1-2): 1-37.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00209-013-1184-3
  • Unidade: ICMC

    Subjects: ANÉIS COM DIVISÃO, K-TEORIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEHLBERG JUNIOR, Renato. Estruturas livres em anéis de divisão. 2013. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26062013-112007/. Acesso em: 07 nov. 2024.
    • APA

      Fehlberg Junior, R. (2013). Estruturas livres em anéis de divisão (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26062013-112007/
    • NLM

      Fehlberg Junior R. Estruturas livres em anéis de divisão [Internet]. 2013 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26062013-112007/
    • Vancouver

      Fehlberg Junior R. Estruturas livres em anéis de divisão [Internet]. 2013 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26062013-112007/
  • Unidade: ICMC

    Subjects: K-TEORIA, ANÉIS COM DIVISÃO, GRUPOS ALGÉBRICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMARGO, Gilberto Luiz Angelice de. Grupo de Brauer e o teorema de Merkurjev-Suslin. 2013. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2013. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10122013-084501/. Acesso em: 07 nov. 2024.
    • APA

      Camargo, G. L. A. de. (2013). Grupo de Brauer e o teorema de Merkurjev-Suslin (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10122013-084501/
    • NLM

      Camargo GLA de. Grupo de Brauer e o teorema de Merkurjev-Suslin [Internet]. 2013 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10122013-084501/
    • Vancouver

      Camargo GLA de. Grupo de Brauer e o teorema de Merkurjev-Suslin [Internet]. 2013 ;[citado 2024 nov. 07 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10122013-084501/
  • Unidade: ICMC

    Subjects: K-TEORIA, ANÉIS COM DIVISÃO, QUATERNIOS, NÚMEROS ALGÉBRICOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TENGAN, Eduardo. Álgebras de divisão exóticas e a filosofia FOFO. 2011. Tese (Livre Docência) – Universidade de São Paulo, São Carlos, 2011. . Acesso em: 07 nov. 2024.
    • APA

      Tengan, E. (2011). Álgebras de divisão exóticas e a filosofia FOFO (Tese (Livre Docência). Universidade de São Paulo, São Carlos.
    • NLM

      Tengan E. Álgebras de divisão exóticas e a filosofia FOFO. 2011 ;[citado 2024 nov. 07 ]
    • Vancouver

      Tengan E. Álgebras de divisão exóticas e a filosofia FOFO. 2011 ;[citado 2024 nov. 07 ]
  • Source: Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. Conference titles: International Conference Groups, Rings and Group Rings. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, REPRESENTAÇÕES DE GRUPOS FINITOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e SHIRVANI, Mazi. Algebraic elements as free factors in simple Artinian rings. 2009, Anais.. Providence: AMS, 2009. Disponível em: http://www.ams.org/books/conm/499/. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, J. Z., & Shirvani, M. (2009). Algebraic elements as free factors in simple Artinian rings. In Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. Providence: AMS. Recuperado de http://www.ams.org/books/conm/499/
    • NLM

      Gonçalves JZ, Shirvani M. Algebraic elements as free factors in simple Artinian rings [Internet]. Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. 2009 ;[citado 2024 nov. 07 ] Available from: http://www.ams.org/books/conm/499/
    • Vancouver

      Gonçalves JZ, Shirvani M. Algebraic elements as free factors in simple Artinian rings [Internet]. Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. 2009 ;[citado 2024 nov. 07 ] Available from: http://www.ams.org/books/conm/499/
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e SHIRVANI, M. Free groups in central simple algebras without Tits' theorem. Communications in Algebra, v. 36, n. 8, p. 3113-3121, 2008Tradução . . Disponível em: https://doi.org/10.1080/00927870802068292. Acesso em: 07 nov. 2024.
    • APA

      Gonçalves, J. Z., & Shirvani, M. (2008). Free groups in central simple algebras without Tits' theorem. Communications in Algebra, 36( 8), 3113-3121. doi:10.1080/00927870802068292
    • NLM

      Gonçalves JZ, Shirvani M. Free groups in central simple algebras without Tits' theorem [Internet]. Communications in Algebra. 2008 ; 36( 8): 3113-3121.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1080/00927870802068292
    • Vancouver

      Gonçalves JZ, Shirvani M. Free groups in central simple algebras without Tits' theorem [Internet]. Communications in Algebra. 2008 ; 36( 8): 3113-3121.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1080/00927870802068292

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024