Filters : "ICMC" Removed: "IFSC" Limpar

Filters



Refine with date range


  • In: Finite Fields and their Applications. Unidade: ICMC

    Subjects: Polinômios, Corpos Finitos, Matrizes

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Lucas da Silva. On the existence and number of invariant polynomials. Finite Fields and their Applications, San Diego, Academic Press, v. 61, n. Ja 2020, p. 1-13, 2020. Disponível em: < https://doi.org/10.1016/j.ffa.2019.101605 > DOI: 10.1016/j.ffa.2019.101605.
    • APA

      Reis, L. da S. (2020). On the existence and number of invariant polynomials. Finite Fields and their Applications, 61( Ja 2020), 1-13. doi:10.1016/j.ffa.2019.101605
    • NLM

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.Available from: https://doi.org/10.1016/j.ffa.2019.101605
    • Vancouver

      Reis L da S. On the existence and number of invariant polynomials [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-13.Available from: https://doi.org/10.1016/j.ffa.2019.101605
  • In: Finite Fields and their Applications. Unidade: ICMC

    Subjects: Curvas Algébricas, Teoria De Galois

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins; FUKASAWA, Satoru. Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, San Diego, Academic Press, v. 61, n. Ja 2020, p. 1-8, 2020. Disponível em: < http://dx.doi.org/10.1016/j.ffa.2019.101579 > DOI: 10.1016/j.ffa.2019.101579.
    • APA

      Borges Filho, H. M., & Fukasawa, S. (2020). Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, 61( Ja 2020), 1-8. doi:10.1016/j.ffa.2019.101579
    • NLM

      Borges Filho HM, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.Available from: http://dx.doi.org/10.1016/j.ffa.2019.101579
    • Vancouver

      Borges Filho HM, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.Available from: http://dx.doi.org/10.1016/j.ffa.2019.101579
  • In: International Journal of Forecasting. Unidade: ICMC

    Subjects: Combinatória, Previsão (análise De Séries Temporais)

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIORUCCI, José Augusto; LOUZADA, Francisco. GROEC: combination method via generalized rolling origin evaluation. International Journal of Forecasting, Amsterdam, Elsevier, v. 36, n. 1, p. 105-109, 2020. Disponível em: < http://dx.doi.org/10.1016/j.ijforecast.2019.04.013 > DOI: 10.1016/j.ijforecast.2019.04.013.
    • APA

      Fiorucci, J. A., & Louzada, F. (2020). GROEC: combination method via generalized rolling origin evaluation. International Journal of Forecasting, 36( 1), 105-109. doi:10.1016/j.ijforecast.2019.04.013
    • NLM

      Fiorucci JA, Louzada F. GROEC: combination method via generalized rolling origin evaluation [Internet]. International Journal of Forecasting. 2020 ; 36( 1): 105-109.Available from: http://dx.doi.org/10.1016/j.ijforecast.2019.04.013
    • Vancouver

      Fiorucci JA, Louzada F. GROEC: combination method via generalized rolling origin evaluation [Internet]. International Journal of Forecasting. 2020 ; 36( 1): 105-109.Available from: http://dx.doi.org/10.1016/j.ijforecast.2019.04.013