Fonte: Nonlinear Analysis. Unidade: IME
Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL
ABNT
BENCI, Vieri et al. Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint. Nonlinear Analysis, v. 220, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.112851. Acesso em: 01 nov. 2024.APA
Benci, V., Nardulli, S., Acevedo, L. E. O., & Piccione, P. (2022). Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint. Nonlinear Analysis, 220. doi:10.1016/j.na.2022.112851NLM
Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.na.2022.112851Vancouver
Benci V, Nardulli S, Acevedo LEO, Piccione P. Lusternik–Schnirelman and Morse Theory for the Van der Waals–Cahn–Hilliard equation with volume constraint [Internet]. Nonlinear Analysis. 2022 ; 220[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.na.2022.112851