Filtros : "Journal of Mathematical Analysis and Applications" "ICMC" Removidos: " IFSC007" "PROBLEMAS DE VALORES INICIAIS" "University of Maribor - Center for Applied Mathematics and Theoretical Physics" "Grejo, Carolina Bueno" "ICMC-ICMC" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE HILBERT, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZALEZ, Karina Navarro e JORDÃO, Thaís. A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels. Journal of Mathematical Analysis and Applications, v. 534, n. 2, p. 1-17, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128121. Acesso em: 17 nov. 2024.
    • APA

      Gonzalez, K. N., & Jordão, T. (2024). A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels. Journal of Mathematical Analysis and Applications, 534( 2), 1-17. doi:10.1016/j.jmaa.2024.128121
    • NLM

      Gonzalez KN, Jordão T. A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 534( 2): 1-17.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128121
    • Vancouver

      Gonzalez KN, Jordão T. A close look at the entropy numbers of the unit ball of the reproducing Hilbert space of isotropic positive definite kernels [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 534( 2): 1-17.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128121
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, v. 537, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128316. Acesso em: 17 nov. 2024.
    • APA

      Bezerra, A. C., & Manfio, F. (2024). Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, 537, 1-13. doi:10.1016/j.jmaa.2024.128316
    • NLM

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
    • Vancouver

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ESPAÇOS DE BESOV

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces. Journal of Mathematical Analysis and Applications, v. 531, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127840. Acesso em: 17 nov. 2024.
    • APA

      Silva, E. R. da. (2024). Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces. Journal of Mathematical Analysis and Applications, 531( 2), 1-12. doi:10.1016/j.jmaa.2023.127840
    • NLM

      Silva ER da. Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127840
    • Vancouver

      Silva ER da. Local solvability for real-analytic involutive structures of tube type of corank one in Besov and Triebel-Lizorkin spaces [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 531( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127840
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e SIQUEIRA, J. On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, v. 540, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128622. Acesso em: 17 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Siqueira, J. (2024). On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, 540( 2), 1-12. doi:10.1016/j.jmaa.2024.128622
    • NLM

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
    • Vancouver

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 17 nov. 2024.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Disponível em 2025-11-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e ALVES, Claudianor Oliveira e MASSA, Eugenio Tommaso. A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N'. Journal of Mathematical Analysis and Applications, v. No 2023, n. 1, p. 1-20, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127432. Acesso em: 17 nov. 2024.
    • APA

      Santos, J. A. dos, Alves, C. O., & Massa, E. T. (2023). A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N'. Journal of Mathematical Analysis and Applications, No 2023( 1), 1-20. doi:10.1016/j.jmaa.2023.127432
    • NLM

      Santos JA dos, Alves CO, Massa ET. A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N' [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 1): 1-20.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127432
    • Vancouver

      Santos JA dos, Alves CO, Massa ET. A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N' [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 1): 1-20.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127432
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS, POLINÔMIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões et al. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 516, n. 1, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2022.126487. Acesso em: 17 nov. 2024.
    • APA

      Barbosa, V. S., Gregori, P., Peron, A. P., & Porcu, E. (2022). Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 516( 1), 1-26. doi:10.1016/j.jmaa.2022.126487
    • NLM

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
    • Vancouver

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 17 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 17 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 17 nov. 2024.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 17 nov. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS HIPERBÓLICOS, VALORES PRÓPRIOS, VARIEDADES MÍNIMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124759. Acesso em: 17 nov. 2024.
    • APA

      Bezerra, A. C., & Manfio, F. (2021). Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, 495( 2), 1-10. doi:10.1016/j.jmaa.2020.124759
    • NLM

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
    • Vancouver

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e GONZALEZ, Rafael Borro e SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, v. 492, n. 2, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124467. Acesso em: 17 nov. 2024.
    • APA

      Dattori da Silva, P. L., Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SIMETRIA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes e LABOURIAU, Isabel Salgado e MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, v. No 2020, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124348. Acesso em: 17 nov. 2024.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MÉTODOS VARIACIONAIS, OPERADORES ELÍTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARCOYA, David e PAIVA, Francisco Odair de e MENDOZA, Jose Miguel. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, v. 480, n. 2, p. 1-12, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123401. Acesso em: 17 nov. 2024.
    • APA

      Arcoya, D., Paiva, F. O. de, & Mendoza, J. M. (2019). Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, 480( 2), 1-12. doi:10.1016/j.jmaa.2019.123401
    • NLM

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123401
    • Vancouver

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123401
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Wilker e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, v. No 2018, n. 2, p. 874-892, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.07.053. Acesso em: 17 nov. 2024.
    • APA

      Fernandes, W., Oliveira, R. D. dos S., & Romanovski, V. G. (2018). Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, No 2018( 2), 874-892. doi:10.1016/j.jmaa.2018.07.053
    • NLM

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2018.07.053
    • Vancouver

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2018.07.053
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 17 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. Se 2018, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.04.077. Acesso em: 17 nov. 2024.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2018.04.077
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, v. 452, n. 1, p. 258-296, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.03.008. Acesso em: 17 nov. 2024.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 17 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024