Filtros : "Journal of Fourier Analysis and Applications" Limpar

Filtros



Refine with date range


  • Source: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e CAVALCANTI, Marcelo Moreira e GONZALEZ, Rafael Borro. Existence and regularity of periodic solutions for a class of partial differential operators. Journal of Fourier Analysis and Applications, v. 27, n. 3, p. 1-41, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00041-021-09855-w. Acesso em: 17 fev. 2026.
    • APA

      Bergamasco, A. P., Cavalcanti, M. M., & Gonzalez, R. B. (2021). Existence and regularity of periodic solutions for a class of partial differential operators. Journal of Fourier Analysis and Applications, 27( 3), 1-41. doi:10.1007/s00041-021-09855-w
    • NLM

      Bergamasco AP, Cavalcanti MM, Gonzalez RB. Existence and regularity of periodic solutions for a class of partial differential operators [Internet]. Journal of Fourier Analysis and Applications. 2021 ; 27( 3): 1-41.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-021-09855-w
    • Vancouver

      Bergamasco AP, Cavalcanti MM, Gonzalez RB. Existence and regularity of periodic solutions for a class of partial differential operators [Internet]. Journal of Fourier Analysis and Applications. 2021 ; 27( 3): 1-41.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-021-09855-w
  • Source: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e MEZIANI, A. A Gevrey differential complex on the torus. Journal of Fourier Analysis and Applications, v. 26, n. 1, p. 1-25, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00041-019-09713-w. Acesso em: 17 fev. 2026.
    • APA

      Dattori da Silva, P. L., & Meziani, A. (2020). A Gevrey differential complex on the torus. Journal of Fourier Analysis and Applications, 26( 1), 1-25. doi:10.1007/s00041-019-09713-w
    • NLM

      Dattori da Silva PL, Meziani A. A Gevrey differential complex on the torus [Internet]. Journal of Fourier Analysis and Applications. 2020 ; 26( 1): 1-25.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-019-09713-w
    • Vancouver

      Dattori da Silva PL, Meziani A. A Gevrey differential complex on the torus [Internet]. Journal of Fourier Analysis and Applications. 2020 ; 26( 1): 1-25.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-019-09713-w
  • Source: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: FUNÇÕES HIPERGEOMÉTRICAS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, SÉRIES DE FOURIER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean Carlo e MENEGATTO, Valdir Antônio. Schoenberg's theorem for positive definite functions on products: a unifying framework. Journal of Fourier Analysis and Applications, v. 25, n. 4, p. 1424-1446, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9631-5. Acesso em: 17 fev. 2026.
    • APA

      Guella, J. C., & Menegatto, V. A. (2019). Schoenberg's theorem for positive definite functions on products: a unifying framework. Journal of Fourier Analysis and Applications, 25( 4), 1424-1446. doi:10.1007/s00041-018-9631-5
    • NLM

      Guella JC, Menegatto VA. Schoenberg's theorem for positive definite functions on products: a unifying framework [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 4): 1424-1446.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-018-9631-5
    • Vancouver

      Guella JC, Menegatto VA. Schoenberg's theorem for positive definite functions on products: a unifying framework [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 4): 1424-1446.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-018-9631-5
  • Source: Journal of Fourier Analysis and Applications. Unidade: IME

    Subjects: PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS, ÁLGEBRAS DE OPERADORES, OPERADORES DE FREDHOLM

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e SCHROHE, Elmar. Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 1147–1202, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9607-5. Acesso em: 17 fev. 2026.
    • APA

      Lopes, P. T. P., & Schrohe, E. (2019). Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities. Journal of Fourier Analysis and Applications, 25( 3), 1147–1202. doi:10.1007/s00041-018-9607-5
    • NLM

      Lopes PTP, Schrohe E. Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 1147–1202.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-018-9607-5
    • Vancouver

      Lopes PTP, Schrohe E. Spectral invariance of pseudodifferential boundary value problems on manifolds with vonical singularities [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 1147–1202.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-018-9607-5
  • Source: Journal of Fourier Analysis and Applications. Unidade: FFCLRP

    Subjects: TEORIA DAS EQUAÇÕES, FRAÇÕES CONTÍNUAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 696-731, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9627-1. Acesso em: 17 fev. 2026.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2019). The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 25( 3), 696-731. doi:10.1007/s00041-018-9627-1
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-018-9627-1
  • Source: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, SÉRIES DE FOURIER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e DATTORI DA SILVA, Paulo Leandro e GONZALEZ, Rafael B. Existence and regularity of periodic solutions to certain first-order partial differential equations. Journal of Fourier Analysis and Applications, v. 23, n. 1, p. 65-90, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00041-016-9463-0. Acesso em: 17 fev. 2026.
    • APA

      Bergamasco, A. P., Dattori da Silva, P. L., & Gonzalez, R. B. (2017). Existence and regularity of periodic solutions to certain first-order partial differential equations. Journal of Fourier Analysis and Applications, 23( 1), 65-90. doi:10.1007/s00041-016-9463-0
    • NLM

      Bergamasco AP, Dattori da Silva PL, Gonzalez RB. Existence and regularity of periodic solutions to certain first-order partial differential equations [Internet]. Journal of Fourier Analysis and Applications. 2017 ; 23( 1): 65-90.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-016-9463-0
    • Vancouver

      Bergamasco AP, Dattori da Silva PL, Gonzalez RB. Existence and regularity of periodic solutions to certain first-order partial differential equations [Internet]. Journal of Fourier Analysis and Applications. 2017 ; 23( 1): 65-90.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1007/s00041-016-9463-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026