The critical exponent(s) for the semilinear fractional diffusive equation (2019)
- Authors:
- USP affiliated authors: PICON, TIAGO HENRIQUE - FFCLRP ; EBERT, MARCELO REMPEL - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1007/s00041-018-9627-1
- Subjects: TEORIA DAS EQUAÇÕES; FRAÇÕES CONTÍNUAS
- Keywords: Semilinear partial differential equations; Caputo derivative; Mittag-Leffler functions; Fractional derivatives; Critical exponents; small data global solutions
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Fourier Analysis and Applications
- ISSN: 1069-5869
- Volume/Número/Paginação/Ano: v. 25, n. 3, p. 696-731, 2019
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, v. 25, n. 3, p. 696-731, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00041-018-9627-1. Acesso em: 10 jan. 2026. -
APA
D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2019). The critical exponent(s) for the semilinear fractional diffusive equation. Journal of Fourier Analysis and Applications, 25( 3), 696-731. doi:10.1007/s00041-018-9627-1 -
NLM
D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00041-018-9627-1 -
Vancouver
D'Abbicco M, Ebert MR, Picon TH. The critical exponent(s) for the semilinear fractional diffusive equation [Internet]. Journal of Fourier Analysis and Applications. 2019 ; 25( 3): 696-731.[citado 2026 jan. 10 ] Available from: https://doi.org/10.1007/s00041-018-9627-1 - L1–Lp estimates for radial solutions of the wave equation and application
- Global existence of small data solutions to the semilinear fractional wave equation
- Symposium in Harmonic Analysis and Geometric Measure Theory
- Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation
- ISAAC Congress
- Div–curl type estimates for elliptic systems of complex vector fields
- The Rellich-Kondrachov compactness theorem for localizable Hardy-Sobolev spaces
- Lp-Lq decay estimates for the linear fractional diffusive equation
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
Informações sobre o DOI: 10.1007/s00041-018-9627-1 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002996174.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
