Symposium in Harmonic Analysis and Geometric Measure Theory (2018)
- Authors:
- USP affiliated authors: PICON, TIAGO HENRIQUE - FFCLRP ; EBERT, MARCELO REMPEL - FFCLRP
- Unidade: FFCLRP
- Subjects: ANÁLISE MATEMÁTICA; GEOMETRIA
- Language: Português
- Imprenta:
- Publisher: DCM/FFCLRP/USP
- Publisher place: Ribeirão Preto
- Date published: 2018
-
ABNT
Symposium in Harmonic Analysis and Geometric Measure Theory. . Ribeirão Preto: DCM/FFCLRP/USP. . Acesso em: 10 jan. 2026. , 2018 -
APA
Symposium in Harmonic Analysis and Geometric Measure Theory. (2018). Symposium in Harmonic Analysis and Geometric Measure Theory. Ribeirão Preto: DCM/FFCLRP/USP. -
NLM
Symposium in Harmonic Analysis and Geometric Measure Theory. 2018 ;[citado 2026 jan. 10 ] -
Vancouver
Symposium in Harmonic Analysis and Geometric Measure Theory. 2018 ;[citado 2026 jan. 10 ] - L1–Lp estimates for radial solutions of the wave equation and application
- Global existence of small data solutions to the semilinear fractional wave equation
- Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation
- The critical exponent(s) for the semilinear fractional diffusive equation
- ISAAC Congress
- Div–curl type estimates for elliptic systems of complex vector fields
- The Rellich-Kondrachov compactness theorem for localizable Hardy-Sobolev spaces
- Lp-Lq decay estimates for the linear fractional diffusive equation
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
