Filtros : "Communications on Pure and Applied Analysis" Removido: "Indexado no ISI Web of Knowledge" Limpar

Filtros



Refine with date range


  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: TEORIA DE MORSE, MÉTODOS VARIACIONAIS, EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e NEMER, Rodrigo Cohen Mota e SOARES, Sérgio Henrique Monari. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, v. 20, n. Ja 2021, p. 449-465, 2021Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020276. Acesso em: 01 nov. 2024.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2021). The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 20( Ja 2021), 449-465. doi:10.3934/cpaa.2020276
    • NLM

      Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020276
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020276
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, Daniela Paula. Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1979-1996, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020087. Acesso em: 01 nov. 2024.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2020). Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, 19( 4), 1979-1996. doi:10.3934/cpaa.2020087
    • NLM

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020087
    • Vancouver

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020087
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS LINEARES, ROBUSTEZ, DIMENSÃO INFINITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan e NAKASSIMA, Guilherme Kenji. Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, v. 19, n. 6, p. 3189-3207, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020138. Acesso em: 01 nov. 2024.
    • APA

      Rodrigues, H. M., Sola-Morales, J., & Nakassima, G. K. (2020). Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, 19( 6), 3189-3207. doi:10.3934/cpaa.2020138
    • NLM

      Rodrigues HM, Sola-Morales J, Nakassima GK. Stability problems in nonautonomous linear differential equations in infinite dimensions [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 6): 3189-3207.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020138
    • Vancouver

      Rodrigues HM, Sola-Morales J, Nakassima GK. Stability problems in nonautonomous linear differential equations in infinite dimensions [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 6): 3189-3207.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020138
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e SEMINARIO-HUERTAS, Paulo Nicanor. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 2219-2233, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020097. Acesso em: 01 nov. 2024.
    • APA

      Ma, T. F., & Seminario-Huertas, P. N. (2020). Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, 19( 4), 2219-2233. doi:10.3934/cpaa.2020097
    • NLM

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020097
    • Vancouver

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020097
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan et al. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, v. No 2020, n. 11, p. 5181-5196, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020232. Acesso em: 01 nov. 2024.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA TOPOLÓGICA, ANÁLISE FUNCIONAL, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure and Applied Analysis, v. 18, n. 2, p. 845-868, 2019Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2019041. Acesso em: 01 nov. 2024.
    • APA

      Aragão-Costa, É. R. (2019). An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure and Applied Analysis, 18( 2), 845-868. doi:10.3934/cpaa.2019041
    • NLM

      Aragão-Costa ÉR. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation [Internet]. Communications on Pure and Applied Analysis. 2019 ; 18( 2): 845-868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2019041
    • Vancouver

      Aragão-Costa ÉR. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation [Internet]. Communications on Pure and Applied Analysis. 2019 ; 18( 2): 845-868.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2019041
  • Source: Communications on Pure and Applied Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS, MÉTODOS DE PERTURBAÇÃO SINGULARES, ANÁLISE ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAŽANIN, Igor e PEREIRA, Marcone Corrêa. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure and Applied Analysis, v. 17, n. 2, p. 579-592, 2018Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2018031. Acesso em: 01 nov. 2024.
    • APA

      Pažanin, I., & Pereira, M. C. (2018). On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure and Applied Analysis, 17( 2), 579-592. doi:10.3934/cpaa.2018031
    • NLM

      Pažanin I, Pereira MC. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption [Internet]. Communications on Pure and Applied Analysis. 2018 ; 17( 2): 579-592.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2018031
    • Vancouver

      Pažanin I, Pereira MC. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption [Internet]. Communications on Pure and Applied Analysis. 2018 ; 17( 2): 579-592.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2018031
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e CARABALLO, Tomás e GAMEIRO, Márcio Fuzeto. Dynamics of a class of odes via Wavelets. Communications on Pure and Applied Analysis, v. No 2017, n. 6, p. 2337-2355, 2017Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2017115. Acesso em: 01 nov. 2024.
    • APA

      Rodrigues, H. M., Caraballo, T., & Gameiro, M. F. (2017). Dynamics of a class of odes via Wavelets. Communications on Pure and Applied Analysis, No 2017( 6), 2337-2355. doi:10.3934/cpaa.2017115
    • NLM

      Rodrigues HM, Caraballo T, Gameiro MF. Dynamics of a class of odes via Wavelets [Internet]. Communications on Pure and Applied Analysis. 2017 ; No 2017( 6): 2337-2355.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2017115
    • Vancouver

      Rodrigues HM, Caraballo T, Gameiro MF. Dynamics of a class of odes via Wavelets [Internet]. Communications on Pure and Applied Analysis. 2017 ; No 2017( 6): 2337-2355.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2017115
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES INTEGRAIS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e SUN, Xingping. General types of spherical mean operators and k-functionals of fractional orders. Communications on Pure and Applied Analysis, v. 14, n. 3, p. 743-757, 2015Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2015.14.743. Acesso em: 01 nov. 2024.
    • APA

      Jordão, T., & Sun, X. (2015). General types of spherical mean operators and k-functionals of fractional orders. Communications on Pure and Applied Analysis, 14( 3), 743-757. doi:10.3934/cpaa.2015.14.743
    • NLM

      Jordão T, Sun X. General types of spherical mean operators and k-functionals of fractional orders [Internet]. Communications on Pure and Applied Analysis. 2015 ; 14( 3): 743-757.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2015.14.743
    • Vancouver

      Jordão T, Sun X. General types of spherical mean operators and k-functionals of fractional orders [Internet]. Communications on Pure and Applied Analysis. 2015 ; 14( 3): 743-757.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2015.14.743
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRASSON, Miguel Vinicius Santini e TACURI, Patricia H. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, v. 13, n. 3, p. 1105-1117, 2014Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2014.13.1105. Acesso em: 01 nov. 2024.
    • APA

      Frasson, M. V. S., & Tacuri, P. H. (2014). Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 13( 3), 1105-1117. doi:10.3934/cpaa.2014.13.1105
    • NLM

      Frasson MVS, Tacuri PH. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients [Internet]. Communications on Pure and Applied Analysis. 2014 ; 13( 3): 1105-1117.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2014.13.1105
    • Vancouver

      Frasson MVS, Tacuri PH. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients [Internet]. Communications on Pure and Applied Analysis. 2014 ; 13( 3): 1105-1117.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2014.13.1105
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SONNER, Stefanie. Pullback exponential attractors for evolution processes in Banach spaces: properties and applications. Communications on Pure and Applied Analysis, v. 13, n. 3, p. 1141-1165, 2014Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2014.13.1141. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, & Sonner, S. (2014). Pullback exponential attractors for evolution processes in Banach spaces: properties and applications. Communications on Pure and Applied Analysis, 13( 3), 1141-1165. doi:10.3934/cpaa.2014.13.1141
    • NLM

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: properties and applications [Internet]. Communications on Pure and Applied Analysis. 2014 ; 13( 3): 1141-1165.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2014.13.1141
    • Vancouver

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: properties and applications [Internet]. Communications on Pure and Applied Analysis. 2014 ; 13( 3): 1141-1165.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2014.13.1141
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SONNER, Stefanie. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Communications on Pure and Applied Analysis, v. 12, n. 6, p. 3047-3071, 2013Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2013.12.3047. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, & Sonner, S. (2013). Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Communications on Pure and Applied Analysis, 12( 6), 3047-3071. doi:10.3934/cpaa.2013.12.3047
    • NLM

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( 6): 3047-3071.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2013.12.3047
    • Vancouver

      Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( 6): 3047-3071.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2013.12.3047
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUTO, Marco A. S e SOARES, Sérgio Henrique Monari. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, v. 12, n. ja 2013, p. 99-116, 2013Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2013.12.99. Acesso em: 01 nov. 2024.
    • APA

      Souto, M. A. S., & Soares, S. H. M. (2013). Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 12( ja 2013), 99-116. doi:10.3934/cpaa.2013.12.99
    • NLM

      Souto MAS, Soares SHM. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( ja 2013): 99-116.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2013.12.99
    • Vancouver

      Souto MAS, Soares SHM. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( ja 2013): 99-116.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2013.12.99
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e MIYAGAKI, Olimpio Hiroshi e SOARES, Sérgio Henrique Monari. Multi-bump solutions for a class of quasilinear equations on R. Communications on Pure and Applied Analysis, v. 11, n. 2, p. 829-844, 2012Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2012.11.829. Acesso em: 01 nov. 2024.
    • APA

      Alves, C. O., Miyagaki, O. H., & Soares, S. H. M. (2012). Multi-bump solutions for a class of quasilinear equations on R. Communications on Pure and Applied Analysis, 11( 2), 829-844. doi:10.3934/cpaa.2012.11.829
    • NLM

      Alves CO, Miyagaki OH, Soares SHM. Multi-bump solutions for a class of quasilinear equations on R [Internet]. Communications on Pure and Applied Analysis. 2012 ; 11( 2): 829-844.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2012.11.829
    • Vancouver

      Alves CO, Miyagaki OH, Soares SHM. Multi-bump solutions for a class of quasilinear equations on R [Internet]. Communications on Pure and Applied Analysis. 2012 ; 11( 2): 829-844.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2012.11.829
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PRIMO, Marcos Roberto Teixeira. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, v. 3, n. 4, p. 637-651, 2004Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2004.3.637. Acesso em: 01 nov. 2024.
    • APA

      Carvalho, A. N. de, & Primo, M. R. T. (2004). Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 3( 4), 637-651. doi:10.3934/cpaa.2004.3.637
    • NLM

      Carvalho AN de, Primo MRT. Spatial homogeneity in parabolic problems with nonlinear boundary conditions [Internet]. Communications on Pure and Applied Analysis. 2004 ; 3( 4): 637-651.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2004.3.637
    • Vancouver

      Carvalho AN de, Primo MRT. Spatial homogeneity in parabolic problems with nonlinear boundary conditions [Internet]. Communications on Pure and Applied Analysis. 2004 ; 3( 4): 637-651.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/cpaa.2004.3.637

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024