The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field (2021)
- Authors:
- Autor USP: SOARES, SÉRGIO HENRIQUE MONARI - ICMC
- Unidade: ICMC
- DOI: 10.3934/cpaa.2020276
- Subjects: TEORIA DE MORSE; MÉTODOS VARIACIONAIS; EQUAÇÃO DE SCHRODINGER; EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM
- Keywords: second order elliptic equation; multiplicity of solutions
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Springfield
- Date published: 2021
- Source:
- Título: Communications on Pure and Applied Analysis
- ISSN: 1534-0392
- Volume/Número/Paginação/Ano: v. 20, n. 1, p. 449-465, Jan. 2021
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
-
ABNT
ALVES, Claudianor Oliveira e NEMER, Rodrigo Cohen Mota e SOARES, Sérgio Henrique Monari. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, v. 20, n. Ja 2021, p. 449-465, 2021Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020276. Acesso em: 14 nov. 2024. -
APA
Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2021). The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 20( Ja 2021), 449-465. doi:10.3934/cpaa.2020276 -
NLM
Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2024 nov. 14 ] Available from: https://doi.org/10.3934/cpaa.2020276 -
Vancouver
Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2024 nov. 14 ] Available from: https://doi.org/10.3934/cpaa.2020276 - A sign-changing solution for the Schrödinger-Poisson equation in 'R POT.3'
- Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field
- Concentration of solutions of an asymptotically linear Schrödinger system
- Multi-bump solutions for a class of quasilinear equations on R
- Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type
- Positive solutions of critical semilinear problems involving a sublinear term at the origin
- Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations
- Uniform Lipschitz estimates on the interface for solutions to two-phase free boundary problems governed by non-uniformly elliptic operator
- On the location and profile of spike-layer nodal solutions to nonlinear shrödinger equations
- Schrödinger-poisson equations without Ambrosetti-Rabinowitz condition
Informações sobre o DOI: 10.3934/cpaa.2020276 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3011796.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas