The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field (2021)
- Authors:
- Autor USP: SOARES, SÉRGIO HENRIQUE MONARI - ICMC
- Unidade: ICMC
- DOI: 10.3934/cpaa.2020276
- Subjects: TEORIA DE MORSE; MÉTODOS VARIACIONAIS; EQUAÇÃO DE SCHRODINGER; EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM
- Keywords: second order elliptic equation; multiplicity of solutions
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Springfield
- Date published: 2021
- Source:
- Título: Communications on Pure and Applied Analysis
- ISSN: 1534-0392
- Volume/Número/Paginação/Ano: v. 20, n. 1, p. 449-465, Jan. 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ALVES, Claudianor Oliveira e NEMER, Rodrigo Cohen Mota e SOARES, Sérgio Henrique Monari. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, v. 20, n. Ja 2021, p. 449-465, 2021Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020276. Acesso em: 28 jan. 2026. -
APA
Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2021). The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 20( Ja 2021), 449-465. doi:10.3934/cpaa.2020276 -
NLM
Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2026 jan. 28 ] Available from: https://doi.org/10.3934/cpaa.2020276 -
Vancouver
Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.[citado 2026 jan. 28 ] Available from: https://doi.org/10.3934/cpaa.2020276 - A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces
- Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth
- Singularly perturbed biharmonic problems with superlinear nonlinearities
- Klein-Gordon-Maxwell equations without Ambrosetti-Rabinowitz
- Multiplicity of solutions for a Schrödinger equation involving a magnetic field with mixed boundary condition
- Multiplicity of positive solutions for a class of nonlinear Schrödinger equations
- Singularly perturbed biharmonic problems with superlinear nonlinearities
- Soluções radiais para equações em espaços do tipo Orlicz-Sobolev
- Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces
- Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type
Informações sobre o DOI: 10.3934/cpaa.2020276 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3011796.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
