Pullback exponential attractors for evolution processes in Banach spaces: theoretical results (2013)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.3934/cpaa.2013.12.3047
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES DIFERENCIAIS PARCIAIS; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Publisher place: Springfield
- Date published: 2013
- Source:
- Título: Communications on Pure and Applied Analysis
- ISSN: 1534-0392
- Volume/Número/Paginação/Ano: v. 12, n. 6, p. 3047-3071, 2013
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CARVALHO, Alexandre Nolasco de e SONNER, Stefanie. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Communications on Pure and Applied Analysis, v. 12, n. 6, p. 3047-3071, 2013Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2013.12.3047. Acesso em: 12 fev. 2026. -
APA
Carvalho, A. N. de, & Sonner, S. (2013). Pullback exponential attractors for evolution processes in Banach spaces: theoretical results. Communications on Pure and Applied Analysis, 12( 6), 3047-3071. doi:10.3934/cpaa.2013.12.3047 -
NLM
Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( 6): 3047-3071.[citado 2026 fev. 12 ] Available from: https://doi.org/10.3934/cpaa.2013.12.3047 -
Vancouver
Carvalho AN de, Sonner S. Pullback exponential attractors for evolution processes in Banach spaces: theoretical results [Internet]. Communications on Pure and Applied Analysis. 2013 ; 12( 6): 3047-3071.[citado 2026 fev. 12 ] Available from: https://doi.org/10.3934/cpaa.2013.12.3047 - Compact convergence approach to reduction infinite dimensional systems to finite dimensions: applications
- Parabolic equations with localized large diffusion: rate of convergence of attractors
- Uma estimativa da dimensão fractal de atratores de sistemas dinâmicos gradient-like
- Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
- Lower semicontinuity of attractors for gradient systems
- A general approximation scheme for attractors of abstract parabolic problems
- Non-autonomous semilinear evolution equations with almost sectorial operators
- Spatial homogeneity in parabolic problems with nonlinear boundary conditions
- Dynamics in dumbbell domains I: continuity of the set of equilibria
- Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations
Informações sobre o DOI: 10.3934/cpaa.2013.12.3047 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
