Filtros : "Communications in Nonlinear Science and Numerical Simulation" Removido: "Brasil" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 08 out. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Assuntos: SISTEMAS DINÂMICOS, MECÂNICA CELESTE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Vitor Martins de. Multistability and complexity in the planar spin–orbit problem. Communications in Nonlinear Science and Numerical Simulation, v. 150, n. artigo 109024, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109024. Acesso em: 08 out. 2025.
    • APA

      Oliveira, V. M. de. (2025). Multistability and complexity in the planar spin–orbit problem. Communications in Nonlinear Science and Numerical Simulation, 150( artigo 109024), 1-13. doi:10.1016/j.cnsns.2025.109024
    • NLM

      Oliveira VM de. Multistability and complexity in the planar spin–orbit problem [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 150( artigo 109024): 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109024
    • Vancouver

      Oliveira VM de. Multistability and complexity in the planar spin–orbit problem [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 150( artigo 109024): 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109024
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IFSC

    Assuntos: FÍSICA COMPUTACIONAL, AUTÔMATOS CELULARES, TEORIA DA INFORMAÇÃO E COMUNICAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROLLIER, Michiel et al. A comprehensive taxonomy of cellular automata. Communications in Nonlinear Science and Numerical Simulation, v. 140, n. Ja 2025, p. 108362-1-108362-31, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108362. Acesso em: 08 out. 2025.
    • APA

      Rollier, M., Zielinski, K. M. C., Daly, A. J., Bruno, O. M., & Baetens, J. M. (2025). A comprehensive taxonomy of cellular automata. Communications in Nonlinear Science and Numerical Simulation, 140( Ja 2025), 108362-1-108362-31. doi:10.1016/j.cnsns.2024.108362
    • NLM

      Rollier M, Zielinski KMC, Daly AJ, Bruno OM, Baetens JM. A comprehensive taxonomy of cellular automata [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 140( Ja 2025): 108362-1-108362-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108362
    • Vancouver

      Rollier M, Zielinski KMC, Daly AJ, Bruno OM, Baetens JM. A comprehensive taxonomy of cellular automata [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 140( Ja 2025): 108362-1-108362-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108362
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: FFCLRP

    Assuntos: SINGULARIDADES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, v. 134, p. 1-31, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108012. Acesso em: 08 out. 2025.
    • APA

      Carvalho, T. de. (2024). Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, 134, 1-31. doi:10.1016/j.cnsns.2024.108012
    • NLM

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
    • Vancouver

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Assunto: EQUAÇÕES INTEGRO-DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STEINDORF, Vanessa et al. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, v. 128, n. artigo 107663, p. 1-21, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2023.107663. Acesso em: 08 out. 2025.
    • APA

      Steindorf, V., Oliva, S. M., Stollenwerk, N., & Aguiar, M. (2024). Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor. Communications in Nonlinear Science and Numerical Simulation, 128( artigo 107663), 1-21. doi:10.1016/j.cnsns.2023.107663
    • NLM

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
    • Vancouver

      Steindorf V, Oliva SM, Stollenwerk N, Aguiar M. Symmetry in a multi-strain epidemiological model with distributed delay as a general cross-protection period and disease enhancement factor [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 128( artigo 107663): 1-21.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2023.107663
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assuntos: SISTEMAS HAMILTONIANOS, CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAZAROTTO, Matheus Jean e CALDAS, Iberê Luiz e ELSKENS, Yves. Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, v. 112, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2022.106525. Acesso em: 08 out. 2025.
    • APA

      Lazarotto, M. J., Caldas, I. L., & Elskens, Y. (2022). Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, 112. doi:10.1016/j.cnsns.2022.106525
    • NLM

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
    • Vancouver

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: REDES COMPLEXAS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YE, Jiachen et al. Performance measures after perturbations in the presence of inertia. Communications in Nonlinear Science and Numerical Simulation, v. 97, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2021.105727. Acesso em: 08 out. 2025.
    • APA

      Ye, J., Peron, T., Lin, W., Kurths, J., & Ji, P. (2021). Performance measures after perturbations in the presence of inertia. Communications in Nonlinear Science and Numerical Simulation, 97, 1-10. doi:10.1016/j.cnsns.2021.105727
    • NLM

      Ye J, Peron T, Lin W, Kurths J, Ji P. Performance measures after perturbations in the presence of inertia [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 97 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2021.105727
    • Vancouver

      Ye J, Peron T, Lin W, Kurths J, Ji P. Performance measures after perturbations in the presence of inertia [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 97 1-10.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2021.105727
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidades: IFSC, ICMC, FFCLRP

    Assuntos: REDES COMPLEXAS, ESPALHAMENTO, BOATO, DIFUSÃO DA INFORMAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VEGA-OLIVEROS, Didier Augusto e COSTA, Luciano da Fontoura e RODRIGUES, Francisco Aparecido. Influence maximization by rumor spreading on correlated networks through community identification. Communications in Nonlinear Science and Numerical Simulation, v. 83, p. 105094-1-105094-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2019.105094. Acesso em: 08 out. 2025.
    • APA

      Vega-Oliveros, D. A., Costa, L. da F., & Rodrigues, F. A. (2020). Influence maximization by rumor spreading on correlated networks through community identification. Communications in Nonlinear Science and Numerical Simulation, 83, 105094-1-105094-13. doi:10.1016/j.cnsns.2019.105094
    • NLM

      Vega-Oliveros DA, Costa L da F, Rodrigues FA. Influence maximization by rumor spreading on correlated networks through community identification [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83 105094-1-105094-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105094
    • Vancouver

      Vega-Oliveros DA, Costa L da F, Rodrigues FA. Influence maximization by rumor spreading on correlated networks through community identification [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83 105094-1-105094-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105094
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: FZEA

    Assuntos: EPILEPSIA, ELETROENCEFALOGRAFIA, MEMÓRIA, DIMENSÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAVID, Sérgio Adriani et al. A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst. Communications in Nonlinear Science and Numerical Simulation, v. 84, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2020.105170. Acesso em: 08 out. 2025.
    • APA

      David, S. A., Machado, J. A. T., Inácio Junior, C. M. C., & Valentim Junior, C. A. (2020). A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst. Communications in Nonlinear Science and Numerical Simulation, 84, 1-13. doi:10.1016/j.cnsns.2020.105170
    • NLM

      David SA, Machado JAT, Inácio Junior CMC, Valentim Junior CA. A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 84 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105170
    • Vancouver

      David SA, Machado JAT, Inácio Junior CMC, Valentim Junior CA. A combined measure to differentiate EEG signals using fractal dimension and MFDFA-Hurst [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 84 1-13.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105170
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: CROMODINÂMICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FOGAÇA, D A et al. Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma. Communications in Nonlinear Science and Numerical Simulation, v. 83, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2019.105144. Acesso em: 08 out. 2025.
    • APA

      Fogaça, D. A., Fariello, R. F., Navarra, F. S., & Stepanyants, Y. A. (2020). Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma. Communications in Nonlinear Science and Numerical Simulation, 83. doi:10.1016/j.cnsns.2019.105144
    • NLM

      Fogaça DA, Fariello RF, Navarra FS, Stepanyants YA. Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105144
    • Vancouver

      Fogaça DA, Fariello RF, Navarra FS, Stepanyants YA. Evolution of non-stationary pulses in a cold magnetized quark-gluon plasma [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2020 ; 83[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2019.105144
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: HIDRODINÂMICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FOGAÇA, David Augaitis e SANCHES JUNIOR, Samuel Mendes e NAVARRA, Fernando Silveira. Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation. Communications in Nonlinear Science and Numerical Simulation, v. 66, p. 208-215, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.06.027. Acesso em: 08 out. 2025.
    • APA

      Fogaça, D. A., Sanches Junior, S. M., & Navarra, F. S. (2019). Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation. Communications in Nonlinear Science and Numerical Simulation, 66, 208-215. doi:10.1016/j.cnsns.2018.06.027
    • NLM

      Fogaça DA, Sanches Junior SM, Navarra FS. Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ;66 208-215.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2018.06.027
    • Vancouver

      Fogaça DA, Sanches Junior SM, Navarra FS. Nonlinear waves in magnetized quark matter and the reduced Ostrovsky equation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2019 ;66 208-215.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2018.06.027
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: EP

    Assunto: PROCESSAMENTO DE SINAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIQUEIRA, José Roberto Castilho. Accidental phase modulation in second-order phase-locked loops. Communications in Nonlinear Science and Numerical Simulation, v. 62, p. 386-394, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2018.03.002. Acesso em: 08 out. 2025.
    • APA

      Piqueira, J. R. C. (2018). Accidental phase modulation in second-order phase-locked loops. Communications in Nonlinear Science and Numerical Simulation, 62, 386-394. doi:10.1016/j.cnsns.2018.03.002
    • NLM

      Piqueira JRC. Accidental phase modulation in second-order phase-locked loops [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2018 ; 62 386-394.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2018.03.002
    • Vancouver

      Piqueira JRC. Accidental phase modulation in second-order phase-locked loops [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2018 ; 62 386-394.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2018.03.002
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: EP

    Assuntos: SISTEMAS DINÂMICOS, CAOS (SISTEMAS DINÂMICOS)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Rodrigo T. e EISENCRAFT, Marcio. A digital bandlimited chaos-based communication system. Communications in Nonlinear Science and Numerical Simulation, v. 37, p. 374-385, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2015.12.023. Acesso em: 08 out. 2025.
    • APA

      Fontes, R. T., & Eisencraft, M. (2016). A digital bandlimited chaos-based communication system. Communications in Nonlinear Science and Numerical Simulation, 37, 374-385. doi:10.1016/j.cnsns.2015.12.023
    • NLM

      Fontes RT, Eisencraft M. A digital bandlimited chaos-based communication system [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 37 374-385.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2015.12.023
    • Vancouver

      Fontes RT, Eisencraft M. A digital bandlimited chaos-based communication system [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2016 ; 37 374-385.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2015.12.023
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IFSC

    Assuntos: CRIPTOLOGIA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHICAO, Jeaneth et al. A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems. Communications in Nonlinear Science and Numerical Simulation, v. 29, n. 1-3, p. 102-115, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2015.01.022. Acesso em: 08 out. 2025.
    • APA

      Machicao, J., Baetens, J. M., Marco, A. G., De Baets, B., & Bruno, O. M. (2015). A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems. Communications in Nonlinear Science and Numerical Simulation, 29( 1-3), 102-115. doi:10.1016/j.cnsns.2015.01.022
    • NLM

      Machicao J, Baetens JM, Marco AG, De Baets B, Bruno OM. A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2015 ; 29( 1-3): 102-115.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2015.01.022
    • Vancouver

      Machicao J, Baetens JM, Marco AG, De Baets B, Bruno OM. A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2015 ; 29( 1-3): 102-115.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2015.01.022
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: EESC

    Assuntos: SISTEMAS NÃO LINEARES, AEROELASTICIDADE DE AERONAVES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VASCONCELLOS, Rui Marcos Grombone de et al. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity. Communications in Nonlinear Science and Numerical Simulation, v. 19, n. 5, p. 1611-1625, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2013.09.022. Acesso em: 08 out. 2025.
    • APA

      Vasconcellos, R. M. G. de, Abdelkefi, A., Hajj, M. R., & Marques, F. D. (2014). Grazing bifurcation in aeroelastic systems with freeplay nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 19( 5), 1611-1625. doi:10.1016/j.cnsns.2013.09.022
    • NLM

      Vasconcellos RMG de, Abdelkefi A, Hajj MR, Marques FD. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2014 ; 19( 5): 1611-1625.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2013.09.022
    • Vancouver

      Vasconcellos RMG de, Abdelkefi A, Hajj MR, Marques FD. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2014 ; 19( 5): 1611-1625.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2013.09.022
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assuntos: PARTÍCULAS (FÍSICA NUCLEAR), QUARK, DINÂMICA DOS FLUÍDOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FOGACA, D. A e FERREIRA FILHO, L. G. e NAVARRA, Fernando Silveira. Kadomtsev–petviashvili equation in relativistic fluid dynamics. Communications in Nonlinear Science and Numerical Simulation, v. fe2013, n. 2, p. 221-235, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2012.07.006. Acesso em: 08 out. 2025.
    • APA

      Fogaca, D. A., Ferreira Filho, L. G., & Navarra, F. S. (2013). Kadomtsev–petviashvili equation in relativistic fluid dynamics. Communications in Nonlinear Science and Numerical Simulation, fe2013( 2), 221-235. doi:10.1016/j.cnsns.2012.07.006
    • NLM

      Fogaca DA, Ferreira Filho LG, Navarra FS. Kadomtsev–petviashvili equation in relativistic fluid dynamics [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2013 ; fe2013( 2): 221-235.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2012.07.006
    • Vancouver

      Fogaca DA, Ferreira Filho LG, Navarra FS. Kadomtsev–petviashvili equation in relativistic fluid dynamics [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2013 ; fe2013( 2): 221-235.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2012.07.006
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, Roseli Aparecida Francelin et al. Locally oriented potential field for controlling multi-robots. Communications in Nonlinear Science and Numerical Simulation, v. 17, n. 12, p. 4664-4671, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2011.10.027. Acesso em: 08 out. 2025.
    • APA

      Romero, R. A. F., Prestes, E., Idiart, M. A. P., & Faria, G. (2012). Locally oriented potential field for controlling multi-robots. Communications in Nonlinear Science and Numerical Simulation, 17( 12), 4664-4671. doi:10.1016/j.cnsns.2011.10.027
    • NLM

      Romero RAF, Prestes E, Idiart MAP, Faria G. Locally oriented potential field for controlling multi-robots [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ; 17( 12): 4664-4671.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2011.10.027
    • Vancouver

      Romero RAF, Prestes E, Idiart MAP, Faria G. Locally oriented potential field for controlling multi-robots [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ; 17( 12): 4664-4671.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2011.10.027
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assuntos: TOKAMAKS, MAGNETISMO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALDAS, Iberê Luiz et al. Nontwist symplectic maps in tokamaks. Communications in Nonlinear Science and Numerical Simulation, v. 17, n. 5, p. 2021-2030, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2011.05.040. Acesso em: 08 out. 2025.
    • APA

      Caldas, I. L., Viana, R. L., Roberto, M., Martins, C. G. L., Szezech Jr., J. D., Portela, J. S. E., et al. (2012). Nontwist symplectic maps in tokamaks. Communications in Nonlinear Science and Numerical Simulation, 17( 5), 2021-2030. doi:10.1016/j.cnsns.2011.05.040
    • NLM

      Caldas IL, Viana RL, Roberto M, Martins CGL, Szezech Jr. JD, Portela JSE, Fonseca J, Silva EJ da. Nontwist symplectic maps in tokamaks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ;17( 5): 2021-2030.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2011.05.040
    • Vancouver

      Caldas IL, Viana RL, Roberto M, Martins CGL, Szezech Jr. JD, Portela JSE, Fonseca J, Silva EJ da. Nontwist symplectic maps in tokamaks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ;17( 5): 2021-2030.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2011.05.040
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      R.L. VIANA, R L et al. Dynamical analysis of turbulence in fusion plasmas and nonlinear waves. Communications in Nonlinear Science and Numerical Simulation, v. 17, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2011.07.006. Acesso em: 08 out. 2025.
    • APA

      R.L. Viana, R. L., Lopes, S. R., Caldas, I. L., Szezech Jr., J. D., Guimarães-Filho, Z., Lima, G. Z. dos S., et al. (2012). Dynamical analysis of turbulence in fusion plasmas and nonlinear waves. Communications in Nonlinear Science and Numerical Simulation, 17. doi:10.1016/j.cnsns.2011.07.006
    • NLM

      R.L. Viana RL, Lopes SR, Caldas IL, Szezech Jr. JD, Guimarães-Filho Z, Lima GZ dos S, Galuzio PP, Batista AM, Kuznetsov YK, Nascimento IC. Dynamical analysis of turbulence in fusion plasmas and nonlinear waves [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ;17[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2011.07.006
    • Vancouver

      R.L. Viana RL, Lopes SR, Caldas IL, Szezech Jr. JD, Guimarães-Filho Z, Lima GZ dos S, Galuzio PP, Batista AM, Kuznetsov YK, Nascimento IC. Dynamical analysis of turbulence in fusion plasmas and nonlinear waves [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2012 ;17[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2011.07.006
  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: EP

    Assunto: REDE DE TELECOMUNICAÇÕES (OTIMIZAÇÃO)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Átila Madureira et al. Design constraints for third-order PLL nodes in master-slave clock distribution networks. Communications in Nonlinear Science and Numerical Simulation, v. 15, n. 9, p. 2565-2574, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2009.09.039. Acesso em: 08 out. 2025.
    • APA

      Bueno, Á. M., Rigon, A. G., Ferreira, A. A., & Piqueira, J. R. C. (2010). Design constraints for third-order PLL nodes in master-slave clock distribution networks. Communications in Nonlinear Science and Numerical Simulation, 15( 9), 2565-2574. doi:10.1016/j.cnsns.2009.09.039
    • NLM

      Bueno ÁM, Rigon AG, Ferreira AA, Piqueira JRC. Design constraints for third-order PLL nodes in master-slave clock distribution networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2010 ; 15( 9): 2565-2574.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2009.09.039
    • Vancouver

      Bueno ÁM, Rigon AG, Ferreira AA, Piqueira JRC. Design constraints for third-order PLL nodes in master-slave clock distribution networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2010 ; 15( 9): 2565-2574.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2009.09.039

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025