Filtros : "Cellulose" Limpar

Filtros



Refine with date range


  • Source: Cellulose. Unidade: IQSC

    Subjects: BIOMASSA, CELULOSE, LIGNINA, ÁGUAS RESIDUÁRIAS, SUSTENTABILIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRIÃO, Giani de Vargas e ROSA, Derval S e FROLLINI, Elisabete. Hydrogels from non-woody lignocellulosic biomass for toxic metal uptake from wastewater: a brief overview. Cellulose, v. 32, p. 691–712, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10570-024-06321-w. Acesso em: 21 fev. 2026.
    • APA

      Brião, G. de V., Rosa, D. S., & Frollini, E. (2025). Hydrogels from non-woody lignocellulosic biomass for toxic metal uptake from wastewater: a brief overview. Cellulose, 32, 691–712. doi:10.1007/s10570-024-06321-w
    • NLM

      Brião G de V, Rosa DS, Frollini E. Hydrogels from non-woody lignocellulosic biomass for toxic metal uptake from wastewater: a brief overview [Internet]. Cellulose. 2025 ;32 691–712.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-024-06321-w
    • Vancouver

      Brião G de V, Rosa DS, Frollini E. Hydrogels from non-woody lignocellulosic biomass for toxic metal uptake from wastewater: a brief overview [Internet]. Cellulose. 2025 ;32 691–712.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-024-06321-w
  • Source: Cellulose. Unidade: FZEA

    Subjects: EMBALAGENS DE ALIMENTOS, PAPEL DE EMBALAGEM, BIOPOLÍMEROS, NANOPARTÍCULAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Kamila de Lima et al. Biopolymer-based coatings containing active ingredients for cellulosic packaging: a review. Cellulose, v. 31, p. 7841-7863, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10570-024-06039-9. Acesso em: 21 fev. 2026.
    • APA

      Santos, K. de L., Moraes, G. H., Noletto, A. P. R., & Sobral, P. J. do A. (2024). Biopolymer-based coatings containing active ingredients for cellulosic packaging: a review. Cellulose, 31, 7841-7863. doi:10.1007/s10570-024-06039-9
    • NLM

      Santos K de L, Moraes GH, Noletto APR, Sobral PJ do A. Biopolymer-based coatings containing active ingredients for cellulosic packaging: a review [Internet]. Cellulose. 2024 ;31 7841-7863.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-024-06039-9
    • Vancouver

      Santos K de L, Moraes GH, Noletto APR, Sobral PJ do A. Biopolymer-based coatings containing active ingredients for cellulosic packaging: a review [Internet]. Cellulose. 2024 ;31 7841-7863.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-024-06039-9
  • Source: Cellulose. Unidades: IPEN, IQ

    Subjects: CELULOSE, LECITINAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANDRINI, Daiana Maria Furlan et al. Lecithin/graphite modified kapok fibers for functional xerogel composites. Cellulose, v. 31, p. 8067-8086, 2024Tradução . . Disponível em: https://dx.doi.org/10.1007/s10570-024-06113-2. Acesso em: 21 fev. 2026.
    • APA

      Sandrini, D. M. F., Pillis, M. F., Correa, O. V., Madesh, P., Krishnasamy, B., & Petri, D. F. S. (2024). Lecithin/graphite modified kapok fibers for functional xerogel composites. Cellulose, 31, 8067-8086. doi:10.1007/s10570-024-06113-2
    • NLM

      Sandrini DMF, Pillis MF, Correa OV, Madesh P, Krishnasamy B, Petri DFS. Lecithin/graphite modified kapok fibers for functional xerogel composites [Internet]. Cellulose. 2024 ; 31 8067-8086.[citado 2026 fev. 21 ] Available from: https://dx.doi.org/10.1007/s10570-024-06113-2
    • Vancouver

      Sandrini DMF, Pillis MF, Correa OV, Madesh P, Krishnasamy B, Petri DFS. Lecithin/graphite modified kapok fibers for functional xerogel composites [Internet]. Cellulose. 2024 ; 31 8067-8086.[citado 2026 fev. 21 ] Available from: https://dx.doi.org/10.1007/s10570-024-06113-2
  • Source: Cellulose. Unidades: IQ, IQSC

    Subjects: CELULOSE, BIOPOLÍMEROS, LÍQUIDOS IÔNICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KEPPELER, Nicolas et al. Cellulose acetylation in ionic liquid-molecular solvent mixtures: influence of the biopolymer-induced preferential solvation on its dissolution and reactivity. Cellulose, v. 31, p. 9043–9055, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10570-024-06014-4. Acesso em: 21 fev. 2026.
    • APA

      Keppeler, N., Pires, P. A. R., Freitas, J. L. S. de, Malek, N. I., Frollini, E., & El Seoud, O. A. (2024). Cellulose acetylation in ionic liquid-molecular solvent mixtures: influence of the biopolymer-induced preferential solvation on its dissolution and reactivity. Cellulose, 31, 9043–9055. doi:10.1007/s10570-024-06014-4
    • NLM

      Keppeler N, Pires PAR, Freitas JLS de, Malek NI, Frollini E, El Seoud OA. Cellulose acetylation in ionic liquid-molecular solvent mixtures: influence of the biopolymer-induced preferential solvation on its dissolution and reactivity [Internet]. Cellulose. 2024 ; 31 9043–9055.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-024-06014-4
    • Vancouver

      Keppeler N, Pires PAR, Freitas JLS de, Malek NI, Frollini E, El Seoud OA. Cellulose acetylation in ionic liquid-molecular solvent mixtures: influence of the biopolymer-induced preferential solvation on its dissolution and reactivity [Internet]. Cellulose. 2024 ; 31 9043–9055.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-024-06014-4
  • Source: Cellulose. Unidades: IQ, IQSC

    Subjects: QUÍMICA ORGÂNICA, CELULOSE

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Cellulose. Cellulose. Dordrecht: Instituto de Química, Universidade de São Paulo. Disponível em: https://link.springer.com/journal/10570/editors. Acesso em: 21 fev. 2026. , 2024
    • APA

      Cellulose. (2024). Cellulose. Cellulose. Dordrecht: Instituto de Química, Universidade de São Paulo. Recuperado de https://link.springer.com/journal/10570/editors
    • NLM

      Cellulose [Internet]. Cellulose. 2024 ;[citado 2026 fev. 21 ] Available from: https://link.springer.com/journal/10570/editors
    • Vancouver

      Cellulose [Internet]. Cellulose. 2024 ;[citado 2026 fev. 21 ] Available from: https://link.springer.com/journal/10570/editors
  • Source: Cellulose. Unidade: IQSC

    Subjects: QUÍMICA, QUÍMICA ORGÂNICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FROLLINI, Elisabete. Cellulose. Cellulose. Dordrecht: Instituto de Química de São Carlos, Universidade de São Paulo. Disponível em: https://www.springer.com/journal/10570/editors. Acesso em: 21 fev. 2026. , 2023
    • APA

      Frollini, E. (2023). Cellulose. Cellulose. Dordrecht: Instituto de Química de São Carlos, Universidade de São Paulo. Recuperado de https://www.springer.com/journal/10570/editors
    • NLM

      Frollini E. Cellulose [Internet]. Cellulose. 2023 ;[citado 2026 fev. 21 ] Available from: https://www.springer.com/journal/10570/editors
    • Vancouver

      Frollini E. Cellulose [Internet]. Cellulose. 2023 ;[citado 2026 fev. 21 ] Available from: https://www.springer.com/journal/10570/editors
  • Source: Cellulose. Unidade: FMRP

    Subjects: CELULOSE, PLASMA, OSTEOBLASTO, BIOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVENUTO, Luíz Guilherme Dercore et al. Bacterial cellulose-based cell culture platform modified by oxygen plasma for tissue engineering applications. Cellulose, v. 30, p. 9625-9634, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05478-0. Acesso em: 21 fev. 2026.
    • APA

      Benevenuto, L. G. D., Barud, H. da S., Cruz, S. A., Caillier, B., Paiva, R. da S., Achcar, J. A., & Montrezor, L. H. (2023). Bacterial cellulose-based cell culture platform modified by oxygen plasma for tissue engineering applications. Cellulose, 30, 9625-9634. doi:10.1007/s10570-023-05478-0
    • NLM

      Benevenuto LGD, Barud H da S, Cruz SA, Caillier B, Paiva R da S, Achcar JA, Montrezor LH. Bacterial cellulose-based cell culture platform modified by oxygen plasma for tissue engineering applications [Internet]. Cellulose. 2023 ; 30 9625-9634.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05478-0
    • Vancouver

      Benevenuto LGD, Barud H da S, Cruz SA, Caillier B, Paiva R da S, Achcar JA, Montrezor LH. Bacterial cellulose-based cell culture platform modified by oxygen plasma for tissue engineering applications [Internet]. Cellulose. 2023 ; 30 9625-9634.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05478-0
  • Source: Cellulose. Unidade: IFSC

    Subjects: CELULOSE, HIDRÓLISE, OXIDAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANNELLA, David et al. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose, v. 30, n. 10, p. 6259-6272 + supplementary information, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05271-z. Acesso em: 21 fev. 2026.
    • APA

      Cannella, D., Weiss, N., Hsieh, C. -W. C., Magri, S., Zarattini, M., Kuska, J., et al. (2023). LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter. Cellulose, 30( 10), 6259-6272 + supplementary information. doi:10.1007/s10570-023-05271-z
    • NLM

      Cannella D, Weiss N, Hsieh C-WC, Magri S, Zarattini M, Kuska J, Karuna N, Thygesen LG, Polikarpov I, Felby C, Jeoh T, Jorgensen H. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter [Internet]. Cellulose. 2023 ; 30( 10): 6259-6272 + supplementary information.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05271-z
    • Vancouver

      Cannella D, Weiss N, Hsieh C-WC, Magri S, Zarattini M, Kuska J, Karuna N, Thygesen LG, Polikarpov I, Felby C, Jeoh T, Jorgensen H. LPMO-mediated oxidation increases cellulose wettability, surface water retention and hydrolysis yield at high dry matter [Internet]. Cellulose. 2023 ; 30( 10): 6259-6272 + supplementary information.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05271-z
  • Source: Cellulose. Unidades: ESALQ, FZEA

    Subjects: ANATOMIA VEGETAL, BROMELIALES, CELULOSE, CRISTALOGRAFIA, FIBRAS VEGETAIS, FOLHAS (PLANTAS), LIGNINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NEVES, Patrícia et al. Leaf anatomy and fiber types of Curaua (Ananas comosus var. erectifolius). Cellulose, v. 30, p. 3429-3439, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05107-w. Acesso em: 21 fev. 2026.
    • APA

      Neves, P., Santos, V. dos, Tomazello-Filho, M., Cabral, M. R., & Savastano Júnior, H. (2023). Leaf anatomy and fiber types of Curaua (Ananas comosus var. erectifolius). Cellulose, 30, 3429-3439. doi:10.1007/s10570-023-05107-w
    • NLM

      Neves P, Santos V dos, Tomazello-Filho M, Cabral MR, Savastano Júnior H. Leaf anatomy and fiber types of Curaua (Ananas comosus var. erectifolius) [Internet]. Cellulose. 2023 ; 30 3429-3439.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05107-w
    • Vancouver

      Neves P, Santos V dos, Tomazello-Filho M, Cabral MR, Savastano Júnior H. Leaf anatomy and fiber types of Curaua (Ananas comosus var. erectifolius) [Internet]. Cellulose. 2023 ; 30 3429-3439.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05107-w
  • Source: Cellulose. Unidade: IFSC

    Subjects: CELULOSE, HIDRÓLISE, OXIDAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HIGASI, Paula Miwa Rabêlo e POLIKARPOV, Igor. Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase. Cellulose, v. No 2023, n. 10, p. 10057-10065 + supplementary information, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05531-y. Acesso em: 21 fev. 2026.
    • APA

      Higasi, P. M. R., & Polikarpov, I. (2023). Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase. Cellulose, No 2023( 10), 10057-10065 + supplementary information. doi:10.1007/s10570-023-05531-y
    • NLM

      Higasi PMR, Polikarpov I. Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase [Internet]. Cellulose. 2023 ; No 2023( 10): 10057-10065 + supplementary information.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05531-y
    • Vancouver

      Higasi PMR, Polikarpov I. Cellulose degradation by lytic polysaccharide monooxygenase fueled by an aryl-alcohol oxidase [Internet]. Cellulose. 2023 ; No 2023( 10): 10057-10065 + supplementary information.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05531-y
  • Source: Cellulose. Unidades: IFSC, IQSC

    Subjects: HIDRÓLISE, CANA-DE-AÇÚCAR, BAGAÇOS, CELULOSE, SULFONAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KANE, Aissata Ousmane et al. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields. Cellulose, v. 30, n. 18, p. 11507-11520, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-023-05600-2. Acesso em: 21 fev. 2026.
    • APA

      Kane, A. O., Scopel, E., Cortez, A. A., Rossi, B. R., Pellegrini, V. de O. A., Rezende, C. A. de, & Polikarpov, I. (2023). Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields. Cellulose, 30( 18), 11507-11520. doi:10.1007/s10570-023-05600-2
    • NLM

      Kane AO, Scopel E, Cortez AA, Rossi BR, Pellegrini V de OA, Rezende CA de, Polikarpov I. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields [Internet]. Cellulose. 2023 ; 30( 18): 11507-11520.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05600-2
    • Vancouver

      Kane AO, Scopel E, Cortez AA, Rossi BR, Pellegrini V de OA, Rezende CA de, Polikarpov I. Enzyme-assisted production of cellulose nanofbers from bleached and bleached/sulfonated sugarcane bagasse: impact of sulfonation on nanocellulose properties and yields [Internet]. Cellulose. 2023 ; 30( 18): 11507-11520.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-023-05600-2
  • Source: Cellulose. Unidade: FZEA

    Subjects: BAMBU, MATERIAIS DE CONSTRUÇÃO, ANÁLISE TÉRMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VITORINO, Fabrício de Campos et al. Bamboo phase quantification using thermogravimetric analysis: deconvolution and machine learning. Cellulose, v. 30, p. 1873-1893, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10570-022-04921-y. Acesso em: 21 fev. 2026.
    • APA

      Vitorino, F. de C., Narzakovsky, M., Azadeh, A., Martins, C., Gomes, B. M. da C., Dweck, J., et al. (2023). Bamboo phase quantification using thermogravimetric analysis: deconvolution and machine learning. Cellulose, 30, 1873-1893. doi:10.1007/s10570-022-04921-y
    • NLM

      Vitorino F de C, Narzakovsky M, Azadeh A, Martins C, Gomes BM da C, Dweck J, Toledo Filho RD, Savastano Júnior H. Bamboo phase quantification using thermogravimetric analysis: deconvolution and machine learning [Internet]. Cellulose. 2023 ; 30 1873-1893.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04921-y
    • Vancouver

      Vitorino F de C, Narzakovsky M, Azadeh A, Martins C, Gomes BM da C, Dweck J, Toledo Filho RD, Savastano Júnior H. Bamboo phase quantification using thermogravimetric analysis: deconvolution and machine learning [Internet]. Cellulose. 2023 ; 30 1873-1893.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04921-y
  • Source: Cellulose. Unidade: EEL

    Subjects: CELULOSE, BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Paulo Henrique Fernandes et al. Effect of the chemical treatment sequence on pineapple peel fiber: chemical composition and thermal degradation behavior. Cellulose, v. 29, p. 8587-8598, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10570-022-04806-0. Acesso em: 21 fev. 2026.
    • APA

      Pereira, P. H. F., Arantes, V., Pereira, B., Ornaghi Junior, H. L., Oliveira, D. M. de, Santagneli, S. H., & Cioffi, M. O. H. (2022). Effect of the chemical treatment sequence on pineapple peel fiber: chemical composition and thermal degradation behavior. Cellulose, 29, 8587-8598. doi:10.1007/s10570-022-04806-0
    • NLM

      Pereira PHF, Arantes V, Pereira B, Ornaghi Junior HL, Oliveira DM de, Santagneli SH, Cioffi MOH. Effect of the chemical treatment sequence on pineapple peel fiber: chemical composition and thermal degradation behavior [Internet]. Cellulose. 2022 ;29 8587-8598.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04806-0
    • Vancouver

      Pereira PHF, Arantes V, Pereira B, Ornaghi Junior HL, Oliveira DM de, Santagneli SH, Cioffi MOH. Effect of the chemical treatment sequence on pineapple peel fiber: chemical composition and thermal degradation behavior [Internet]. Cellulose. 2022 ;29 8587-8598.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04806-0
  • Source: Cellulose. Unidade: FZEA

    Subjects: CELULOSE, BIODEGRADAÇÃO, FILTRAÇÃO, COVID-19

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STANISLAS, Tido Tiwa et al. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review. Cellulose, v. 29, p. 8001-8024, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10570-022-04792-3. Acesso em: 21 fev. 2026.
    • APA

      Stanislas, T. T., Bilba, K., Santos, R. P. de O., Onésippe-Potiron, C., Savastano Júnior, H., & Arsène, M. -A. (2022). Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review. Cellulose, 29, 8001-8024. doi:10.1007/s10570-022-04792-3
    • NLM

      Stanislas TT, Bilba K, Santos RP de O, Onésippe-Potiron C, Savastano Júnior H, Arsène M-A. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review [Internet]. Cellulose. 2022 ; 29 8001-8024.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04792-3
    • Vancouver

      Stanislas TT, Bilba K, Santos RP de O, Onésippe-Potiron C, Savastano Júnior H, Arsène M-A. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review [Internet]. Cellulose. 2022 ; 29 8001-8024.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04792-3
  • Source: Cellulose. Unidade: IQSC

    Subjects: QUÍMICA, QUÍMICA ORGÂNICA, CELULOSE

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Cellulose. Cellulose. Dordrecht: Instituto de Química de São Carlos, Universidade de São Paulo. Disponível em: https://www.springer.com/journal/10570/editors. Acesso em: 21 fev. 2026. , 2022
    • APA

      Cellulose. (2022). Cellulose. Cellulose. Dordrecht: Instituto de Química de São Carlos, Universidade de São Paulo. Recuperado de https://www.springer.com/journal/10570/editors
    • NLM

      Cellulose [Internet]. Cellulose. 2022 ;[citado 2026 fev. 21 ] Available from: https://www.springer.com/journal/10570/editors
    • Vancouver

      Cellulose [Internet]. Cellulose. 2022 ;[citado 2026 fev. 21 ] Available from: https://www.springer.com/journal/10570/editors
  • Source: Cellulose. Unidades: IFSC, IQSC

    Subjects: CELULOSE, MAMONA, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PORTO, Deyvid Souza et al. Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation. Cellulose, v. 29, n. 11, p. 6301-6322, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10570-022-04662-y. Acesso em: 21 fev. 2026.
    • APA

      Porto, D. S., Cassales, A., Ciol, H., Inada, N. M., & Frollini, E. (2022). Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation. Cellulose, 29( 11), 6301-6322. doi:10.1007/s10570-022-04662-y
    • NLM

      Porto DS, Cassales A, Ciol H, Inada NM, Frollini E. Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation [Internet]. Cellulose. 2022 ; 29( 11): 6301-6322.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04662-y
    • Vancouver

      Porto DS, Cassales A, Ciol H, Inada NM, Frollini E. Cellulose as a polyol in the synthesis of bio-based polyurethanes with simultaneous film formation [Internet]. Cellulose. 2022 ; 29( 11): 6301-6322.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-022-04662-y
  • Source: Cellulose. Unidade: EEL

    Subjects: POLÍMEROS (QUÍMICA ORGÂNICA), ÓLEOS VEGETAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VALENTINO, Henrique Augusto Silva et al. Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres. Cellulose, v. 28, p. 7109–7121, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10570-021-03999-0. Acesso em: 21 fev. 2026.
    • APA

      Valentino, H. A. S., Pupio, P. de T. L. dos R. e S., Gandini, A., & Lacerda, T. M. (2021). Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres. Cellulose, 28, 7109–7121. doi:10.1007/s10570-021-03999-0
    • NLM

      Valentino HAS, Pupio P de TL dos R e S, Gandini A, Lacerda TM. Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres [Internet]. Cellulose. 2021 ;28 7109–7121.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-021-03999-0
    • Vancouver

      Valentino HAS, Pupio P de TL dos R e S, Gandini A, Lacerda TM. Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres [Internet]. Cellulose. 2021 ;28 7109–7121.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-021-03999-0
  • Source: Cellulose. Unidade: IQSC

    Subjects: CELULOSE, CARNAÚBA, ÓLEOS ESSENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA FILHO, Josemar Gonçalves de et al. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils:: a new functional mater for food packaging applications. Cellulose, v. 28, p. 6499–6511, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10570-021-03945-0. Acesso em: 21 fev. 2026.
    • APA

      Oliveira Filho, J. G. de, Albiero, B. R., Cipriano, L., Bezerra, C. C. de O. N., Oldoni, F. C. A., Egea, M. B., et al. (2021). Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils:: a new functional mater for food packaging applications. Cellulose, 28, 6499–6511. doi:10.1007/s10570-021-03945-0
    • NLM

      Oliveira Filho JG de, Albiero BR, Cipriano L, Bezerra CC de ON, Oldoni FCA, Egea MB, Azeredo HMC de, Ferreira MD. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils:: a new functional mater for food packaging applications [Internet]. Cellulose. 2021 ; 28 6499–6511.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-021-03945-0
    • Vancouver

      Oliveira Filho JG de, Albiero BR, Cipriano L, Bezerra CC de ON, Oldoni FCA, Egea MB, Azeredo HMC de, Ferreira MD. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils:: a new functional mater for food packaging applications [Internet]. Cellulose. 2021 ; 28 6499–6511.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-021-03945-0
  • Source: Cellulose. Unidade: IQSC

    Subjects: QUÍMICA, QUÍMICA ORGÂNICA

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Cellulose. Cellulose. Dordrecht: Springer Netherlands. Disponível em: https://repositorio.usp.br/directbitstream/669beae6-e7fc-4131-9333-0ded7d643653/P19202.pdf. Acesso em: 21 fev. 2026. , 2021
    • APA

      Cellulose. (2021). Cellulose. Cellulose. Dordrecht: Springer Netherlands. Recuperado de https://repositorio.usp.br/directbitstream/669beae6-e7fc-4131-9333-0ded7d643653/P19202.pdf
    • NLM

      Cellulose [Internet]. Cellulose. 2021 ;[citado 2026 fev. 21 ] Available from: https://repositorio.usp.br/directbitstream/669beae6-e7fc-4131-9333-0ded7d643653/P19202.pdf
    • Vancouver

      Cellulose [Internet]. Cellulose. 2021 ;[citado 2026 fev. 21 ] Available from: https://repositorio.usp.br/directbitstream/669beae6-e7fc-4131-9333-0ded7d643653/P19202.pdf
  • Source: Cellulose. Unidade: EEL

    Subjects: BIOTECNOLOGIA, CELULOSE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARANTES, Valdeir et al. The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities. Cellulose, v. 27, p. 10571-10630, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10570-020-03332-1. Acesso em: 21 fev. 2026.
    • APA

      Arantes, V., Dias, I. K. R., Berto, G. L., Pereira, B., Marotti, B. de S., & Nogueira, C. F. de O. (2020). The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities. Cellulose, 27, 10571-10630. doi:10.1007/s10570-020-03332-1
    • NLM

      Arantes V, Dias IKR, Berto GL, Pereira B, Marotti B de S, Nogueira CF de O. The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities [Internet]. Cellulose. 2020 ; 27 10571-10630.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-020-03332-1
    • Vancouver

      Arantes V, Dias IKR, Berto GL, Pereira B, Marotti B de S, Nogueira CF de O. The current status of the enzyme-mediated isolation and functionalization of nanocelluloses: production, properties, techno-economics, and opportunities [Internet]. Cellulose. 2020 ; 27 10571-10630.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1007/s10570-020-03332-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026