Filtros : "Tahzibi, Ali" Removidos: "FOLHEAÇÕES" "MICENA, FERNANDO PEREIRA" "Financiado pela Fundação Calouste Gulbenkian" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 02 nov. 2024.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2024). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Bulletin of the London Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e ZHANG, Jinhua. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, v. 55, n. 3, p. 1404-1418, 2023Tradução . . Disponível em: https://doi.org/10.1112/blms.12800. Acesso em: 02 nov. 2024.
    • APA

      Tahzibi, A., & Zhang, J. (2023). Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps. Bulletin of the London Mathematical Society, 55( 3), 1404-1418. doi:10.1112/blms.12800
    • NLM

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1112/blms.12800
    • Vancouver

      Tahzibi A, Zhang J. Disintegrations of non-hyperbolic ergodic measures along the center foliation of DA maps [Internet]. Bulletin of the London Mathematical Society. 2023 ; 55( 3): 1404-1418.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1112/blms.12800
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 02 nov. 2024.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Annales Scientifiques de l'École Normale Supérieure. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS, DINÂMICA DE FOLHEAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Jérôme e FISHER, Todd e TAHZIBI, Ali. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, v. 55, n. 4, p. 969-1002, 2022Tradução . . Disponível em: https://doi.org/10.24033/asens.2511. Acesso em: 02 nov. 2024.
    • APA

      Buzzi, J., Fisher, T., & Tahzibi, A. (2022). A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows. Annales Scientifiques de l'École Normale Supérieure, 55( 4), 969-1002. doi:10.24033/asens.2511
    • NLM

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 nov. 02 ] Available from: https://doi.org/10.24033/asens.2511
    • Vancouver

      Buzzi J, Fisher T, Tahzibi A. A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows [Internet]. Annales Scientifiques de l'École Normale Supérieure. 2022 ; 55( 4): 969-1002.[citado 2024 nov. 02 ] Available from: https://doi.org/10.24033/asens.2511
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ENTROPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Unstable entropy in smooth ergodic theory. Nonlinearity, v. 34, n. 8, p. R75-R118, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abd7c7. Acesso em: 02 nov. 2024.
    • APA

      Tahzibi, A. (2021). Unstable entropy in smooth ergodic theory. Nonlinearity, 34( 8), R75-R118. doi:10.1088/1361-6544/abd7c7
    • NLM

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
    • Vancouver

      Tahzibi A. Unstable entropy in smooth ergodic theory [Internet]. Nonlinearity. 2021 ; 34( 8): R75-R118.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1088/1361-6544/abd7c7
  • Source: Portugaliae Mathematica. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA, DIFEOMORFISMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRONZI, Marcus Augusto e TAHZIBI, Ali. Homoclinic tangency and variation of entropy. Portugaliae Mathematica, v. 77, n. 3-4, p. 383-398, 2020Tradução . . Disponível em: https://doi.org/10.4171/PM/2055. Acesso em: 02 nov. 2024.
    • APA

      Bronzi, M. A., & Tahzibi, A. (2020). Homoclinic tangency and variation of entropy. Portugaliae Mathematica, 77( 3-4), 383-398. doi:10.4171/PM/2055
    • NLM

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4171/PM/2055
    • Vancouver

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4171/PM/2055
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e YANG, Jiagang. Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, v. 371, n. 2, p. 1231-1251, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7278. Acesso em: 02 nov. 2024.
    • APA

      Tahzibi, A., & Yang, J. (2019). Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, 371( 2), 1231-1251. doi:10.1090/tran/7278
    • NLM

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/tran/7278
    • Vancouver

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/tran/7278
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2453-2463, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14422. Acesso em: 02 nov. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2019). A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, 147( 6), 2453-2463. doi:10.1090/proc/14422
    • NLM

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/proc/14422
    • Vancouver

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/proc/14422
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 02 nov. 2024.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Unidade: ICMC

    Subjects: MATEMÁTICA, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAQUERA, Herbert Milton Ccalle. Teorema de Furstenberg sobre o produto aleatório de matrizes. 2018. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/. Acesso em: 02 nov. 2024.
    • APA

      Maquera, H. M. C. (2018). Teorema de Furstenberg sobre o produto aleatório de matrizes (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/
    • NLM

      Maquera HMC. Teorema de Furstenberg sobre o produto aleatório de matrizes [Internet]. 2018 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/
    • Vancouver

      Maquera HMC. Teorema de Furstenberg sobre o produto aleatório de matrizes [Internet]. 2018 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-095453/
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, v. 329, p. 329-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.02.019. Acesso em: 02 nov. 2024.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2018). On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, 329, 329-360. doi:10.1016/j.aim.2018.02.019
    • NLM

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
    • Vancouver

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
  • Source: Thematic Program. Conference titles: Dynamical Systems School of Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. 2017, Anais.. Tehran: IPM, 2017. Disponível em: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf. Acesso em: 02 nov. 2024.
    • APA

      Tahzibi, A. (2017). Random walk on the group of matrices and diffeomorphisms: a dynamical point of view. In Thematic Program. Tehran: IPM. Recuperado de http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
    • NLM

      Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2024 nov. 02 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
    • Vancouver

      Tahzibi A. Random walk on the group of matrices and diffeomorphisms: a dynamical point of view [Internet]. Thematic Program. 2017 ;[citado 2024 nov. 02 ] Available from: http://math.ipm.ir/gt/dynamics/mini-course__Tahzibi.pdf
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P e TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, v. 163, n. 1, p. 139-155, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1458-3. Acesso em: 02 nov. 2024.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
  • Unidade: ICMC

    Subjects: DIFEOMORFISMOS, ENTROPIA, ESTABILIDADE DE SISTEMAS, TEORIA ERGÓDICA DA MEDIDA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAREJAS, Jorge Luis Crisostomo. Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms. 2016. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2016. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/. Acesso em: 02 nov. 2024.
    • APA

      Parejas, J. L. C. (2016). Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/
    • NLM

      Parejas JLC. Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms [Internet]. 2016 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/
    • Vancouver

      Parejas JLC. Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms [Internet]. 2016 ;[citado 2024 nov. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-12012017-103104/
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, v. 235, p. 37-48, 2016Tradução . . Disponível em: https://doi.org/10.4064/fm92-10-2015. Acesso em: 02 nov. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2016). On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, 235, 37-48. doi:10.4064/fm92-10-2015
    • NLM

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4064/fm92-10-2015
    • Vancouver

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 nov. 02 ] Available from: https://doi.org/10.4064/fm92-10-2015
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CATALAN, Thiago e TAHZIBI, Ali. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 34, n. 5, p. 1503-1524, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.12. Acesso em: 02 nov. 2024.
    • APA

      Catalan, T., & Tahzibi, A. (2014). A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms. Ergodic Theory and Dynamical Systems, 34( 5), 1503-1524. doi:10.1017/etds.2013.12
    • NLM

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/etds.2013.12
    • Vancouver

      Catalan T, Tahzibi A. A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1503-1524.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1017/etds.2013.12
  • Source: Journal of Modern Dynamics - JMD. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOGOLEV, Andrey e TAHZIBI, Ali. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, v. 8, n. 3/4, p. 549-576, 2014Tradução . . Disponível em: https://doi.org/10.3934/jmd.2014.8.549. Acesso em: 02 nov. 2024.
    • APA

      Gogolev, A., & Tahzibi, A. (2014). Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics - JMD, 8( 3/4), 549-576. doi:10.3934/jmd.2014.8.549
    • NLM

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
    • Vancouver

      Gogolev A, Tahzibi A. Center Lyapunov exponents in partially hyperbolic dynamics [Internet]. Journal of Modern Dynamics - JMD. 2014 ; 8( 3/4): 549-576.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/jmd.2014.8.549
  • Source: Resumos. Conference titles: Congresso Brasileiro de Jovens Pesquisadores em Matemática Pura e Aplicada. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, Régis. Bernoulli property for partially hyperbolic diffeomorphisms. 2014, Anais.. São Paulo: IME-USP, 2014. Disponível em: http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf. Acesso em: 02 nov. 2024.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2014). Bernoulli property for partially hyperbolic diffeomorphisms. In Resumos. São Paulo: IME-USP. Recuperado de http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf
    • NLM

      Ponce G, Tahzibi A, Varão R. Bernoulli property for partially hyperbolic diffeomorphisms [Internet]. Resumos. 2014 ;[citado 2024 nov. 02 ] Available from: http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf
    • Vancouver

      Ponce G, Tahzibi A, Varão R. Bernoulli property for partially hyperbolic diffeomorphisms [Internet]. Resumos. 2014 ;[citado 2024 nov. 02 ] Available from: http://jovens.ime.usp.br/jovens/sites/all/themes/simplecorp/abstracts/LivrodeResumos.pdf
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, G e TAHZIBI, Ali. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3'. Proceedings of the American Mathematical Society, v. 142, n. 9, p. 3193-3205, 2014Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2014-12063-6. Acesso em: 02 nov. 2024.
    • APA

      Ponce, G., & Tahzibi, A. (2014). Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3'. Proceedings of the American Mathematical Society, 142( 9), 3193-3205. doi:10.1090/S0002-9939-2014-12063-6
    • NLM

      Ponce G, Tahzibi A. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3' [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3193-3205.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12063-6
    • Vancouver

      Ponce G, Tahzibi A. Central Lyapunov exponent of partially hyperbolic diffeomorphisms of 'T POT.3' [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3193-3205.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12063-6
  • Source: Journal of Modern Dynamics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, Régis. Minimal yet measurable foliations. Journal of Modern Dynamics, v. 8, n. 1, p. 93-107, 2014Tradução . . Disponível em: https://doi.org/10.3934/jmd.2014.8.93. Acesso em: 02 nov. 2024.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2014). Minimal yet measurable foliations. Journal of Modern Dynamics, 8( 1), 93-107. doi:10.3934/jmd.2014.8.93
    • NLM

      Ponce G, Tahzibi A, Varão R. Minimal yet measurable foliations [Internet]. Journal of Modern Dynamics. 2014 ; 8( 1): 93-107.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/jmd.2014.8.93
    • Vancouver

      Ponce G, Tahzibi A, Varão R. Minimal yet measurable foliations [Internet]. Journal of Modern Dynamics. 2014 ; 8( 1): 93-107.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/jmd.2014.8.93

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024