On bifurcation and local rigidity of triply periodic minimal surfaces in R3 (2018)
Source: Annales de l’institut Fourier. Unidade: IME
Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO
ABNT
KOISO, Miyuki e PICCIONE, Paolo e SHODA, Toshihiro. On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, v. 68 n. 6, p. 2743-2778, 2018Tradução . . Disponível em: https://doi.org/10.5802/aif.3222. Acesso em: 31 out. 2024.APA
Koiso, M., Piccione, P., & Shoda, T. (2018). On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, 68 n. 6, 2743-2778. doi:10.5802/aif.3222NLM
Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.[citado 2024 out. 31 ] Available from: https://doi.org/10.5802/aif.3222Vancouver
Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.[citado 2024 out. 31 ] Available from: https://doi.org/10.5802/aif.3222