Filtros : "Koiso, Miyuki" Limpar

Filtros



Refine with date range


  • Source: Annales de l’institut Fourier. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DIFERENCIAL, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOISO, Miyuki e PICCIONE, Paolo e SHODA, Toshihiro. On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, v. 68 n. 6, p. 2743-2778, 2018Tradução . . Disponível em: https://doi.org/10.5802/aif.3222. Acesso em: 31 out. 2024.
    • APA

      Koiso, M., Piccione, P., & Shoda, T. (2018). On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, 68 n. 6, 2743-2778. doi:10.5802/aif.3222
    • NLM

      Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.[citado 2024 out. 31 ] Available from: https://doi.org/10.5802/aif.3222
    • Vancouver

      Koiso M, Piccione P, Shoda T. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.[citado 2024 out. 31 ] Available from: https://doi.org/10.5802/aif.3222
  • Source: Journal of the Mathematical Society of Japan. Unidade: IME

    Subjects: PROBLEMAS VARIACIONAIS, SUPERFÍCIES MÍNIMAS, ANÁLISE GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOISO, Miyuki e PALMER, Bennett e PICCIONE, Paolo. Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, v. 69, n. 4, p. 1519-1554, 2017Tradução . . Disponível em: https://doi.org/10.2969/jmsj/06941519. Acesso em: 31 out. 2024.
    • APA

      Koiso, M., Palmer, B., & Piccione, P. (2017). Stability and bifurcation for surfaces with constant mean curvature. Journal of the Mathematical Society of Japan, 69( 4), 1519-1554. doi:10.2969/jmsj/06941519
    • NLM

      Koiso M, Palmer B, Piccione P. Stability and bifurcation for surfaces with constant mean curvature [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1519-1554.[citado 2024 out. 31 ] Available from: https://doi.org/10.2969/jmsj/06941519
    • Vancouver

      Koiso M, Palmer B, Piccione P. Stability and bifurcation for surfaces with constant mean curvature [Internet]. Journal of the Mathematical Society of Japan. 2017 ; 69( 4): 1519-1554.[citado 2024 out. 31 ] Available from: https://doi.org/10.2969/jmsj/06941519
  • Source: Advances in Calculus of Variations. Unidade: IME

    Subjects: TEORIA DA BIFURCAÇÃO, GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOISO, Miyuki e PALMER, Bennett e PICCIONE, Paolo. Bifurcation and symmetry breaking of nodoids with fixed boundary. Advances in Calculus of Variations, v. 8, n. 4, p. 337–370, 2015Tradução . . Disponível em: https://doi.org/10.1515/acv-2014-0011. Acesso em: 31 out. 2024.
    • APA

      Koiso, M., Palmer, B., & Piccione, P. (2015). Bifurcation and symmetry breaking of nodoids with fixed boundary. Advances in Calculus of Variations, 8( 4), 337–370. doi:10.1515/acv-2014-0011
    • NLM

      Koiso M, Palmer B, Piccione P. Bifurcation and symmetry breaking of nodoids with fixed boundary [Internet]. Advances in Calculus of Variations. 2015 ; 8( 4): 337–370.[citado 2024 out. 31 ] Available from: https://doi.org/10.1515/acv-2014-0011
    • Vancouver

      Koiso M, Palmer B, Piccione P. Bifurcation and symmetry breaking of nodoids with fixed boundary [Internet]. Advances in Calculus of Variations. 2015 ; 8( 4): 337–370.[citado 2024 out. 31 ] Available from: https://doi.org/10.1515/acv-2014-0011

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024