Exportar registro bibliográfico


Metrics:

On bifurcation and local rigidity of triply periodic minimal surfaces in R3 (2018)

  • Authors:
  • USP affiliated authors: PICCIONE, PAOLO - IME
  • Unidades: IME
  • DOI: 10.5802/aif.3222
  • Subjects: GEOMETRIA DIFERENCIAL; GEOMETRIA DIFERENCIAL; TEORIA DA BIFURCAÇÃO
  • Keywords: triply periodic minimal surfaces; H-family,; rPD-famil; tP-family; tD-family; tCLP-family; bifurcation theory
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Versão PublicadaOnline source accessDOI
    Informações sobre o DOI: 10.5802/aif.3222 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold

    Download do texto completo

    Tipo Nome Link
    Versão Publicada2917564.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KOISO, Miyuki; SHODA, Toshihiro; PICCIONE, Paolo. On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, Saint-Martin-d'Heres, Cedram, v. 68 n. 6, p. 2743-2778, 2018. Disponível em: < https://doi.org/10.5802/aif.3222 > DOI: 10.5802/aif.3222.
    • APA

      Koiso, M., Shoda, T., & Piccione, P. (2018). On bifurcation and local rigidity of triply periodic minimal surfaces in R3. Annales de l’institut Fourier, 68 n. 6, 2743-2778. doi:10.5802/aif.3222
    • NLM

      Koiso M, Shoda T, Piccione P. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.Available from: https://doi.org/10.5802/aif.3222
    • Vancouver

      Koiso M, Shoda T, Piccione P. On bifurcation and local rigidity of triply periodic minimal surfaces in R3 [Internet]. Annales de l’institut Fourier. 2018 ; 68 n. 6 2743-2778.Available from: https://doi.org/10.5802/aif.3222

    Referências citadas na obra
    [1] Alías, Luis J.; Piccione, Paolo On the manifold structure of the set of unparameterized embeddings with low regularity, Bull. Braz. Math. Soc. (N.S.), Volume 42 (2011) no. 2, pp. 171-183
    [2] Andersson, Sten; Hyde, Stephen T.; Larsson, Kåre; Lidin, Sven Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers, Chem. Rev., Volume 88 (1988) no. 1, pp. 221-242
    [3] Bettiol, Renato G.; Piccione, Paolo; Santoro, Bianca Bifurcation of periodic solutions to the singular Yamabe problem on spheres, J. Differ. Geom., Volume 103 (2016) no. 2, pp. 191-205 http://projecteuclid.org/euclid.jdg/1463404117
    [4] Bettiol, Renato G.; Piccione, Paolo; Siciliano, Gaetano Deforming solutions of geometric variational problems with varying symmetry groups, Transform. Groups, Volume 19 (2014) no. 4, pp. 941-968
    [5] Ejiri, Norio A generating function of a complex Lagrangian cone in H n (2013) (preprint)
    [6] Ejiri, Norio; Shoda, Toshihiro On a moduli theory of minimal surfaces, Prospects of differential geometry and its related fields, World Scientific (2014), pp. 155-172
    [7] Ejiri, Norio; Shoda, Toshihiro The Morse index of a triply periodic minimal surface, Differ. Geom. Appl., Volume 58 (2018), pp. 177-201
    [8] Fischer, Werner; Koch, Elke On 3-periodic minimal surfaces, Z. Kristallogr., Volume 179 (1987) no. 1-4, pp. 31-52
    [9] Fogden, Andrew S.; Hyde, Stephen T. Continuous transformations of cubic minimal surfaces, Eur. Phys. J. B, Volume 7 (1999) no. 1, pp. 91-104
    [10] Fogden, Andrew S.; Schröder-Turk, G. E.; Hyde, Stephen T. Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces, Eur. Phys. J. B, Volume 54 (2006) no. 4, pp. 509-524
    [11] Kapouleas, Nicolaos Constant mean curvature surfaces in Euclidean three-space, Bull. Am. Math. Soc., Volume 17 (1987) no. 2, pp. 318-320
    [12] Kapouleas, Nicolaos Complete constant mean curvature surfaces in Euclidean three-space, Ann. Math., Volume 131 (1990) no. 2, pp. 239-330
    [13] Karcher, Hermann The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions, Manuscr. Math., Volume 64 (1989) no. 3, pp. 291-357
    [14] Kato, Tosio Perturbation theory for linear operators, Springer, Classics in Mathematics (1995), xxii+619 pages (Reprint of the 1980 edition)
    [15] Kielhöfer, Hansjörg Bifurcation theory. An introduction with applications to partial differential equations, Springer, Applied Mathematical Sciences, Volume 156 (2012), viii+398 pages
    [16] Koiso, Miyuki; Palmer, Bennett; Piccione, Paolo Bifurcation and symmetry breaking of nodoids with fixed boundary, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 337-370
    [17] Korevaar, Nicholas J.; Kusner, Rob; Solomon, Bruce The structure of complete embedded surfaces with constant mean curvature, J. Differ. Geom., Volume 30 (1989) no. 2, pp. 465-503 http://projecteuclid.org/euclid.jdg/1214443598
    [18] Mazzeo, Rafe; Pacard, Frank Constant mean curvature surfaces with Delaunay ends, Commun. Anal. Geom., Volume 9 (2001) no. 1, pp. 169-237
    [19] Mazzeo, Rafe; Pacard, Frank; Pollack, Daniel Connected sums of constant mean curvature surfaces in Euclidean 3 space, J. Reine Angew. Math., Volume 536 (2001), pp. 115-165
    [20] Meeks, William H. Iii The theory of triply periodic minimal surfaces, Indiana Univ. Math. J., Volume 39 (1990) no. 3, pp. 877-936
    [21] Montiel, Sebastián; Ros, Antonio Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990), Springer (Lecture Notes in Mathematics) Volume 1481 (1991), pp. 147-174
    [22] Nagano, Tadashi; Smyth, Brian Minimal varieties and harmonic maps in tori, Comment. Math. Helv., Volume 50 (1975), pp. 249-265
    [23] Pérez, Joaquí N; Ros, Antonio The space of properly embedded minimal surfaces with finite total curvature, Indiana Univ. Math. J., Volume 45 (1996) no. 1, pp. 177-204
    [24] Plateau, J. Experimental and theoretical statics of liquids subject to molecular forces only (facstaff.susqu.edu/brakke/aux/downloads/plateau-eng.pdf, translated by Kenneth A. Brakke)
    [25] Ros, Antonio One-sided complete stable minimal surfaces, J. Differ. Geom., Volume 74 (2006) no. 1, pp. 69-92 http://projecteuclid.org/euclid.jdg/1175266182
    [26] Ross, Marty Schwarz’ P and D surfaces are stable, Differ. Geom. Appl., Volume 2 (1992) no. 2, pp. 179-195
    [27] Rump, Siegfried M. Verification methods: rigorous results using floating-point arithmetic, Acta Numer., Volume 19 (2010), pp. 287-449
    [28] Von Schnering, Hans Georg; Nesper, R. Nodal surfaces of Fourier series: Fundamental invariants of structured matter, Zeitschrift für Physik B Condensed Matter, Volume 83 (1991), pp. 407-412
    [29] Schoen, Alan Hugh Infinite periodic minimal surfaces without self-intersections, National Aeronautics and Space Administration, NASA Technical Note, Volume D-5541 (1970), vii+92 pages
    [30] Traizet, Martin On the genus of triply periodic minimal surfaces, J. Differ. Geom., Volume 79 (2008) no. 2, pp. 243-275 http://projecteuclid.org/euclid.jdg/1211512641
    [31] White, Brian The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J., Volume 36 (1987) no. 3, pp. 567-602

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020