Filtros : "TEORIA ERGÓDICA" Removido: "Vargas, Edson" Limpar

Filtros



Refine with date range


  • Source: Nonlinearity. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, TEOREMAS LIMITES, ANÁLISE HARMÔNICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, v. 38, n. 8, p. 082001-1-082001-40, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/adf0dd. Acesso em: 07 out. 2025.
    • APA

      Smania, D. (2025). A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids. Nonlinearity, 38( 8), 082001-1-082001-40. doi:10.1088/1361-6544/adf0dd
    • NLM

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
    • Vancouver

      Smania D. A survey on irregular dynamics: piecewise expanding maps, transfer operators, Besov spaces and grids [Internet]. Nonlinearity. 2025 ; 38( 8): 082001-1-082001-40.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1361-6544/adf0dd
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALCEDO, Graccyela. Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, v. 56, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00574-025-00461-8. Acesso em: 07 out. 2025.
    • APA

      Salcedo, G. (2025). Equivalence of classical properties for strongly irreducible linear cocycles. Bulletin of the Brazilian Mathematical Society : New Series, 56( 3), 1-31. doi:10.1007/s00574-025-00461-8
    • NLM

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
    • Vancouver

      Salcedo G. Equivalence of classical properties for strongly irreducible linear cocycles [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2025 ; 56( 3): 1-31.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00574-025-00461-8
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, v. 45, n. 5, p. 1444-1460, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 07 out. 2025.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2025). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 45( 5), 1444-1460. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 07 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2025 ; 45( 5): 1444-1460.[citado 2025 out. 07 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Mathematical Neuroscience and Applications. Unidade: IME

    Subjects: PROBABILIDADE, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRÉ, Morgan e POUZAT, Christophe. A quasi-stationary approach to metastability in a system of spiking neurons with synaptic plasticity. Mathematical Neuroscience and Applications, v. 4, n. artigo 2, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.46298/mna.7668. Acesso em: 07 out. 2025.
    • APA

      André, M., & Pouzat, C. (2025). A quasi-stationary approach to metastability in a system of spiking neurons with synaptic plasticity. Mathematical Neuroscience and Applications, 4( artigo 2), 1-31. doi:10.46298/mna.7668
    • NLM

      André M, Pouzat C. A quasi-stationary approach to metastability in a system of spiking neurons with synaptic plasticity [Internet]. Mathematical Neuroscience and Applications. 2025 ; 4( artigo 2): 1-31.[citado 2025 out. 07 ] Available from: https://doi.org/10.46298/mna.7668
    • Vancouver

      André M, Pouzat C. A quasi-stationary approach to metastability in a system of spiking neurons with synaptic plasticity [Internet]. Mathematical Neuroscience and Applications. 2025 ; 4( artigo 2): 1-31.[citado 2025 out. 07 ] Available from: https://doi.org/10.46298/mna.7668
  • Source: Journal of Modern Dynamics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ANÁLISE FUNCIONAL, ANÁLISE REAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Deformation theory of one-dimensional systems. Journal of Modern Dynamics, v. 21, p. 1-20, 2025Tradução . . Disponível em: https://doi.org/10.3934/jmd.2025001. Acesso em: 07 out. 2025.
    • APA

      Smania, D. (2025). Deformation theory of one-dimensional systems. Journal of Modern Dynamics, 21, 1-20. doi:10.3934/jmd.2025001
    • NLM

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 out. 07 ] Available from: https://doi.org/10.3934/jmd.2025001
    • Vancouver

      Smania D. Deformation theory of one-dimensional systems [Internet]. Journal of Modern Dynamics. 2025 ; 21 1-20.[citado 2025 out. 07 ] Available from: https://doi.org/10.3934/jmd.2025001
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas. On Cr-generic twist maps of T2. Ergodic Theory and Dynamical Systems, 2025Tradução . . Disponível em: https://doi.org/10.1017/etds.2025.10204. Acesso em: 07 out. 2025.
    • APA

      Zanata, S. A. (2025). On Cr-generic twist maps of T2. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2025.10204
    • NLM

      Zanata SA. On Cr-generic twist maps of T2 [Internet]. Ergodic Theory and Dynamical Systems. 2025 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1017/etds.2025.10204
    • Vancouver

      Zanata SA. On Cr-generic twist maps of T2 [Internet]. Ergodic Theory and Dynamical Systems. 2025 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1017/etds.2025.10204
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA SIMBÓLICA, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Jérôme e CROVISIER, Sylvain e LIMA, Yuri Gomes. Symbolic dynamics for large non-uniformly hyperbolic sets of three dimensional flows. Advances in Mathematics, v. 479, n. artigo 110410, p. 1-91, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2025.110410. Acesso em: 07 out. 2025.
    • APA

      Buzzi, J., Crovisier, S., & Lima, Y. G. (2025). Symbolic dynamics for large non-uniformly hyperbolic sets of three dimensional flows. Advances in Mathematics, 479( artigo 110410), 1-91. doi:10.1016/j.aim.2025.110410
    • NLM

      Buzzi J, Crovisier S, Lima YG. Symbolic dynamics for large non-uniformly hyperbolic sets of three dimensional flows [Internet]. Advances in Mathematics. 2025 ; 479( artigo 110410): 1-91.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.aim.2025.110410
    • Vancouver

      Buzzi J, Crovisier S, Lima YG. Symbolic dynamics for large non-uniformly hyperbolic sets of three dimensional flows [Internet]. Advances in Mathematics. 2025 ; 479( artigo 110410): 1-91.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.aim.2025.110410
  • Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, PROBABILIDADE, CAOS (SISTEMAS DINÂMICOS), ANÁLISE FUNCIONAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIGLIAGGI, Bella Rocxane Martins. Stationary Measure and Markov Operator. 2025. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-23092025-143944/. Acesso em: 07 out. 2025.
    • APA

      Figliaggi, B. R. M. (2025). Stationary Measure and Markov Operator (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-23092025-143944/
    • NLM

      Figliaggi BRM. Stationary Measure and Markov Operator [Internet]. 2025 ;[citado 2025 out. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-23092025-143944/
    • Vancouver

      Figliaggi BRM. Stationary Measure and Markov Operator [Internet]. 2025 ;[citado 2025 out. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-23092025-143944/
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, OPERADORES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia e CELY, Liliana. Ground states for coupled NLS equations with double power nonlinearities. Nonlinear Differential Equations and Applications NoDEA, v. 31, n. artigo 74, p. 1-29, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-024-00956-1. Acesso em: 07 out. 2025.
    • APA

      Goloshchapova, N., & Cely, L. (2024). Ground states for coupled NLS equations with double power nonlinearities. Nonlinear Differential Equations and Applications NoDEA, 31( artigo 74), 1-29. doi:10.1007/s00030-024-00956-1
    • NLM

      Goloshchapova N, Cely L. Ground states for coupled NLS equations with double power nonlinearities [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2024 ; 31( artigo 74): 1-29.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00030-024-00956-1
    • Vancouver

      Goloshchapova N, Cely L. Ground states for coupled NLS equations with double power nonlinearities [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2024 ; 31( artigo 74): 1-29.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00030-024-00956-1
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Xiao-Chuan e TAL, Fábio Armando. On non-contractible periodic orbits and bounded deviations. Nonlinearity, v. 37, n. artigo 075007, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad4948. Acesso em: 07 out. 2025.
    • APA

      Liu, X. -C., & Tal, F. A. (2024). On non-contractible periodic orbits and bounded deviations. Nonlinearity, 37( artigo 075007), 1-26. doi:10.1088/1361-6544/ad4948
    • NLM

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
    • Vancouver

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas e TAL, Fábio Armando. Mather's regions of instability for annulus diffeomorphisms. Bulletin of the London Mathematical Society, v. 56, n. 3, p. 1129-1148, 2024Tradução . . Disponível em: https://doi.org/10.1112/blms.12985. Acesso em: 07 out. 2025.
    • APA

      Zanata, S. A., & Tal, F. A. (2024). Mather's regions of instability for annulus diffeomorphisms. Bulletin of the London Mathematical Society, 56( 3), 1129-1148. doi:10.1112/blms.12985
    • NLM

      Zanata SA, Tal FA. Mather's regions of instability for annulus diffeomorphisms [Internet]. Bulletin of the London Mathematical Society. 2024 ; 56( 3): 1129-1148.[citado 2025 out. 07 ] Available from: https://doi.org/10.1112/blms.12985
    • Vancouver

      Zanata SA, Tal FA. Mather's regions of instability for annulus diffeomorphisms [Internet]. Bulletin of the London Mathematical Society. 2024 ; 56( 3): 1129-1148.[citado 2025 out. 07 ] Available from: https://doi.org/10.1112/blms.12985
  • Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e GUARINO, Pablo. Dynamics of circle mappings. . Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-031-67495-2. Acesso em: 07 out. 2025. , 2024
    • APA

      Faria, E. de, & Guarino, P. (2024). Dynamics of circle mappings. Cham: Springer. doi:10.1007/978-3-031-67495-2
    • NLM

      Faria E de, Guarino P. Dynamics of circle mappings [Internet]. 2024 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/978-3-031-67495-2
    • Vancouver

      Faria E de, Guarino P. Dynamics of circle mappings [Internet]. 2024 ;[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/978-3-031-67495-2
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COATES, Douglas e LUZZATTO, Stefano. Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, v. 405, n. 4, p. 1-34, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00220-024-04957-0. Acesso em: 07 out. 2025.
    • APA

      Coates, D., & Luzzatto, S. (2024). Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, 405( 4), 1-34. doi:10.1007/s00220-024-04957-0
    • NLM

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
    • Vancouver

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
  • Unidade: ICMC

    Subjects: REDES COMPLEXAS, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, ANÁLISE DE SÉRIES TEMPORAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Edmilson Roque dos. Reconstruction of sparse network dynamics from data. 2024. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/. Acesso em: 07 out. 2025.
    • APA

      Santos, E. R. dos. (2024). Reconstruction of sparse network dynamics from data (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/
    • NLM

      Santos ER dos. Reconstruction of sparse network dynamics from data [Internet]. 2024 ;[citado 2025 out. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/
    • Vancouver

      Santos ER dos. Reconstruction of sparse network dynamics from data [Internet]. 2024 ;[citado 2025 out. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032024-191639/
  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Édson de e GUARINO, Pablo e NUSSENZVEIG, Bruno. Automorphic measures and invariant distributions for circle dynamics. Mathematische Zeitschrift, v. 306, n. artigo 26, p. 1-34, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00209-023-03427-y. Acesso em: 07 out. 2025.
    • APA

      Faria, É. de, Guarino, P., & Nussenzveig, B. (2024). Automorphic measures and invariant distributions for circle dynamics. Mathematische Zeitschrift, 306( artigo 26), 1-34. doi:10.1007/s00209-023-03427-y
    • NLM

      Faria É de, Guarino P, Nussenzveig B. Automorphic measures and invariant distributions for circle dynamics [Internet]. Mathematische Zeitschrift. 2024 ; 306( artigo 26): 1-34.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00209-023-03427-y
    • Vancouver

      Faria É de, Guarino P, Nussenzveig B. Automorphic measures and invariant distributions for circle dynamics [Internet]. Mathematische Zeitschrift. 2024 ; 306( artigo 26): 1-34.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00209-023-03427-y
  • Source: Nonlinearity. Unidade: IME

    Subjects: SOLITONS, EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, MECÂNICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, v. 37, n. artigo 045015, p. 1-43, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2eba. Acesso em: 07 out. 2025.
    • APA

      Pava, J. A. (2024). Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, 37( artigo 045015), 1-43. doi:10.1088/1361-6544/ad2eba
    • NLM

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
    • Vancouver

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 out. 07 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: VARIEDADES COMPLEXAS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAKATOS, Ulisses e TAL, Fábio Armando. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive. Ergodic Theory and Dynamical Systems, v. 44, n. 4, p. 1102-1122, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2023.32. Acesso em: 07 out. 2025.
    • APA

      Lakatos, U., & Tal, F. A. (2024). Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive. Ergodic Theory and Dynamical Systems, 44( 4), 1102-1122. doi:10.1017/etds.2023.32
    • NLM

      Lakatos U, Tal FA. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive [Internet]. Ergodic Theory and Dynamical Systems. 2024 ; 44( 4): 1102-1122.[citado 2025 out. 07 ] Available from: https://doi.org/10.1017/etds.2023.32
    • Vancouver

      Lakatos U, Tal FA. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive [Internet]. Ergodic Theory and Dynamical Systems. 2024 ; 44( 4): 1102-1122.[citado 2025 out. 07 ] Available from: https://doi.org/10.1017/etds.2023.32
  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: SOLITONS, EQUAÇÃO DE SCHRODINGER, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, MECÂNICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability theory for the NLS equation on looping edge graphs. Mathematische Zeitschrift, v. 308, n. artigo 19, p. 1-28, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00209-024-03565-x. Acesso em: 07 out. 2025.
    • APA

      Pava, J. A. (2024). Stability theory for the NLS equation on looping edge graphs. Mathematische Zeitschrift, 308( artigo 19), 1-28. doi:10.1007/s00209-024-03565-x
    • NLM

      Pava JA. Stability theory for the NLS equation on looping edge graphs [Internet]. Mathematische Zeitschrift. 2024 ; 308( artigo 19): 1-28.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00209-024-03565-x
    • Vancouver

      Pava JA. Stability theory for the NLS equation on looping edge graphs [Internet]. Mathematische Zeitschrift. 2024 ; 308( artigo 19): 1-28.[citado 2025 out. 07 ] Available from: https://doi.org/10.1007/s00209-024-03565-x
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e SIQUEIRA, J. On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, v. 540, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128622. Acesso em: 07 out. 2025.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Siqueira, J. (2024). On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, 540( 2), 1-12. doi:10.1016/j.jmaa.2024.128622
    • NLM

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
    • Vancouver

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2025 out. 07 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA UNIDIMENSIONAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OGASAWARA, Enos Yuiti. Cociclos lineares em sistemas dinâmicos. 2023. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19122023-115037/. Acesso em: 07 out. 2025.
    • APA

      Ogasawara, E. Y. (2023). Cociclos lineares em sistemas dinâmicos (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19122023-115037/
    • NLM

      Ogasawara EY. Cociclos lineares em sistemas dinâmicos [Internet]. 2023 ;[citado 2025 out. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19122023-115037/
    • Vancouver

      Ogasawara EY. Cociclos lineares em sistemas dinâmicos [Internet]. 2023 ;[citado 2025 out. 07 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19122023-115037/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025